Suppr超能文献

具有保证错误率提升的集成线性判别分析。

Integrative linear discriminant analysis with guaranteed error rate improvement.

作者信息

Li Quefeng, Li Lexin

机构信息

Department of Biostatistics, University of North Carolina at Chapel Hill, 3105D McGavran-Greenberg Hall, Chapel Hill, North Carolina 27599, U.S.A.

Division of Biostatistics, University of California at Berkeley, 50 University Hall 7360, Berkeley, California 94720, U.S.A.

出版信息

Biometrika. 2018 Dec;105(4):917-930. doi: 10.1093/biomet/asy047. Epub 2018 Oct 22.

Abstract

Multiple types of data measured on a common set of subjects arise in many areas. Numerous empirical studies have found that integrative analysis of such data can result in better statistical performance in terms of prediction and feature selection. However, the advantages of integrative analysis have mostly been demonstrated empirically. In the context of two-class classification, we propose an integrative linear discriminant analysis method and establish a theoretical guarantee that it achieves a smaller classification error than running linear discriminant analysis on each data type individually. We address the issues of outliers and missing values, frequently encountered in integrative analysis, and illustrate our method through simulations and a neuroimaging study of Alzheimer's disease.

摘要

在许多领域中,会出现针对同一组受试者测量的多种类型的数据。大量实证研究发现,对这些数据进行综合分析在预测和特征选择方面能够带来更好的统计性能。然而,综合分析的优势大多是通过实证证明的。在二分类的背景下,我们提出了一种综合线性判别分析方法,并建立了理论保证,即与对每种数据类型单独进行线性判别分析相比,该方法能实现更小的分类误差。我们解决了综合分析中经常遇到的异常值和缺失值问题,并通过模拟和一项关于阿尔茨海默病的神经影像学研究对我们的方法进行了说明。

相似文献

7
Multimodal neuroimaging data integration and pathway analysis.多模态神经影像学数据整合与通路分析。
Biometrics. 2021 Sep;77(3):879-889. doi: 10.1111/biom.13351. Epub 2020 Aug 20.
8
Lp- and Ls-Norm Distance Based Robust Linear Discriminant Analysis.基于 lp- 和 Ls- 范数距离的鲁棒线性判别分析。
Neural Netw. 2018 Sep;105:393-404. doi: 10.1016/j.neunet.2018.05.020. Epub 2018 Jun 15.
9
Robust L1-norm two-dimensional linear discriminant analysis.稳健的L1范数二维线性判别分析
Neural Netw. 2015 May;65:92-104. doi: 10.1016/j.neunet.2015.01.003. Epub 2015 Feb 7.

本文引用的文献

1
Robust estimation of high-dimensional covariance and precision matrices.高维协方差矩阵和精度矩阵的稳健估计。
Biometrika. 2018 Jun 1;105(2):271-284. doi: 10.1093/biomet/asy011. Epub 2018 Mar 27.
3
Structured Matrix Completion with Applications to Genomic Data Integration.结构化矩阵补全及其在基因组数据整合中的应用
J Am Stat Assoc. 2016;111(514):621-633. doi: 10.1080/01621459.2015.1021005. Epub 2016 Aug 18.
4
Statistical Methods in Integrative Genomics.整合基因组学中的统计方法
Annu Rev Stat Appl. 2016 Jun;3:181-209. doi: 10.1146/annurev-statistics-041715-033506. Epub 2016 Apr 18.
5
6
General overview on the merits of multimodal neuroimaging data fusion.多模态神经影像学数据融合的优点概述。
Neuroimage. 2014 Nov 15;102 Pt 1:3-10. doi: 10.1016/j.neuroimage.2014.05.018. Epub 2014 May 16.
7
8

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验