Juge Roméo, Bairagi Kaushik, Rana Kumari Gaurav, Vogel Jan, Sall Mamour, Mailly Dominique, Pham Van Tuong, Zhang Qiang, Sisodia Naveen, Foerster Michael, Aballe Lucia, Belmeguenai Mohamed, Roussigné Yves, Auffret Stéphane, Buda-Prejbeanu Liliana D, Gaudin Gilles, Ravelosona Dafiné, Boulle Olivier
Univ. Grenoble Alpes, CNRS, CEA, Grenoble INP, Spintec, 38000 Grenoble, France.
Univ. Grenoble Alpes, CNRS, Institut Néel, Grenoble, France.
Nano Lett. 2021 Apr 14;21(7):2989-2996. doi: 10.1021/acs.nanolett.1c00136. Epub 2021 Mar 19.
Magnetic skyrmions are deemed to be the forerunners of novel spintronic memory and logic devices. While their observation and their current-driven motion at room temperature have been demonstrated, certain issues regarding their nucleation, stability, pinning, and skyrmion Hall effect still need to be overcome to realize functional devices. Here, we demonstrate that focused He-ion-irradiation can be used to create and guide skyrmions in racetracks. We show that the reduction of the perpendicular magnetic anisotropy and Dzyaloshinskii-Moriya interaction in the track defined by ion-irradiation leads to the formation of stable isolated skyrmions. Current-driven skyrmion motion experiments and simulations reveal that the skyrmions move along the irradiated track, resulting in the suppression of the skyrmion Hall effect, and that the maximum skyrmion velocity can be enhanced by tuning the magnetic properties. These results open up a new path to nucleate and guide magnetic skyrmions in racetrack devices.
磁性斯格明子被认为是新型自旋电子存储和逻辑器件的先驱。虽然它们在室温下的观测及其电流驱动运动已得到证实,但要实现功能器件,仍需克服有关其成核、稳定性、钉扎以及斯格明子霍尔效应的某些问题。在此,我们证明聚焦氦离子辐照可用于在跑道中创建和引导斯格明子。我们表明,由离子辐照定义的跑道中垂直磁各向异性和Dzyaloshinskii-Moriya相互作用的降低会导致形成稳定的孤立斯格明子。电流驱动的斯格明子运动实验和模拟表明,斯格明子沿辐照跑道移动,从而抑制了斯格明子霍尔效应,并且通过调整磁性能可提高斯格明子的最大速度。这些结果为在跑道器件中使磁性斯格明子成核和引导开辟了一条新途径。