Suppr超能文献

结合基于独立内镜探头的拉曼光谱和光学相干断层扫描技术与贝叶斯规则的结肠肿瘤鉴别

Colon Tumor Discrimination Combining Independent Endoscopic Probe-Based Raman Spectroscopy and Optical Coherence Tomography Modalities with Bayes Rule.

作者信息

Vasquez David L, Kreft Calvin, Latka Ines, Popp Jürgen, Mantke René, Schie Iwan W

机构信息

Leibniz-Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany.

Department of Medical Engineering and Biotechnology, University of Applied Sciences-Jena, Carl-Zeiss-Promenade 2, 07745 Jena, Germany.

出版信息

Int J Mol Sci. 2024 Dec 11;25(24):13306. doi: 10.3390/ijms252413306.

Abstract

Colorectal cancer is one of the most prevalent forms of cancer globally. The most common routine diagnostic methods are the examination of the interior of the colon during colonoscopy or sigmoidoscopy, which frequently includes the removal of a biopsy sample. Optical methods, such as Raman spectroscopy (RS) and optical coherence tomography (OCT), can help to improve diagnostics and reduce the number of unnecessary biopsies. For in vivo use, we have developed fiber-optic probes, one for single-point Raman measurements and one for volumetric OCT. Here, we present the results of a clinical study using these fiber-optic probes in an ex vivo setting. The goal was to evaluate the beneficial effect of combining these two modalities on the AUC ROC score of the machine learning models for the discrimination of cancerous and healthy tissue. In the initial stage of the investigation, both modalities were validated separately using linear discriminant analysis. RS was subjected to spectral preprocessing, while OCT underwent texture feature extraction. Subsequently, both modalities were integrated using the Bayes rule, resulting in an enhanced area under the curve score of 0.93, representing an improvement over the 0.77 score for Raman spectroscopy and 0.86 for OCT.

摘要

结直肠癌是全球最常见的癌症形式之一。最常见的常规诊断方法是在结肠镜检查或乙状结肠镜检查期间对结肠内部进行检查,这通常包括采集活检样本。光学方法,如拉曼光谱(RS)和光学相干断层扫描(OCT),有助于改善诊断并减少不必要的活检次数。为了用于体内检测,我们开发了光纤探头,一个用于单点拉曼测量,另一个用于体积OCT。在此,我们展示了在体外环境中使用这些光纤探头的临床研究结果。目的是评估将这两种模式相结合对用于区分癌组织和健康组织的机器学习模型的AUC ROC评分的有益效果。在研究的初始阶段,使用线性判别分析分别对两种模式进行了验证。RS进行了光谱预处理,而OCT进行了纹理特征提取。随后,使用贝叶斯规则将两种模式进行整合,得到的曲线下面积分数提高到0.93,相较于拉曼光谱的0.77分和OCT的0.86分有所提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61b6/11677020/0baafe50bfaa/ijms-25-13306-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验