Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, F-33607 Pessac, France.
Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), CEA Saclay, F91191 Gif-sur-Yvette, France.
Sci Adv. 2021 Mar 19;7(12). doi: 10.1126/sciadv.abd9153. Print 2021 Mar.
Sequence-specific oligomers with predictable folding patterns, i.e., foldamers, provide new opportunities to mimic α-helical peptides and design inhibitors of protein-protein interactions. One major hurdle of this strategy is to retain the correct orientation of key side chains involved in protein surface recognition. Here, we show that the structural plasticity of a foldamer backbone may notably contribute to the required spatial adjustment for optimal interaction with the protein surface. By using oligoureas as α helix mimics, we designed a foldamer/peptide hybrid inhibitor of histone chaperone ASF1, a key regulator of chromatin dynamics. The crystal structure of its complex with ASF1 reveals a notable plasticity of the urea backbone, which adapts to the ASF1 surface to maintain the same binding interface. One additional benefit of generating ASF1 ligands with nonpeptide oligourea segments is the resistance to proteolysis in human plasma, which was highly improved compared to the cognate α-helical peptide.
具有可预测折叠模式的序列特异性寡聚物,即折叠体,为模拟α-螺旋肽和设计蛋白质-蛋白质相互作用抑制剂提供了新的机会。该策略的一个主要障碍是保留参与蛋白质表面识别的关键侧链的正确取向。在这里,我们表明折叠体骨架的结构可塑性可能显著有助于与蛋白质表面进行最佳相互作用所需的空间调整。通过使用寡脲作为α螺旋模拟物,我们设计了组蛋白伴侣 ASF1 的折叠体/肽混合抑制剂,ASF1 是染色质动力学的关键调节剂。其与 ASF1 的复合物的晶体结构揭示了脲骨架的明显可塑性,它适应 ASF1 表面以保持相同的结合界面。用非肽寡脲段生成 ASF1 配体的另一个好处是对人血浆中的蛋白水解的抗性,与同源α-螺旋肽相比,其得到了极大的提高。