Suppr超能文献

基于光电容积脉搏波和生理先验数据的无创无袖带血压机器学习算法。

Non-invasive cuff-less blood pressure machine learning algorithm using photoplethysmography and prior physiological data.

机构信息

International Doctoral Innovation Centre.

School of Mathematical Sciences, University of Nottingham Ningbo China, Ningbo, China.

出版信息

Blood Press Monit. 2021 Aug 1;26(4):312-320. doi: 10.1097/MBP.0000000000000534.

Abstract

Conventional blood pressure (BP) measurement methods have a number of drawbacks such as being invasive, cuff-based or requiring manual operation. Many studies are focussed on emerging methods of noninvasive, cuff-less and continuous BP measurement, and using only photoplethysmography to estimate BP has become popular. Although it is well known that physiological characteristics of the subject are important in BP estimation, this has not been widely explored. This article presents a novel method which adopts photoplethysmography and prior knowledge of a subject's physiological features to estimate DBP and SBP. Features extracted from a fingertip photoplethysmography signal and prior knowledge of a subject's physiological characteristics, such as gender, age, height, weight and BMI is used to estimate BP using three different machine learning models: artificial neural networks, support vector machine and least absolute shrinkage and selection operator regression. The accuracy of BP estimation obtained when prior knowledge of the physiological characteristics are incorporated into the model is superior to those which do not take the physiological characteristics into consideration. In this study, the best performing algorithm is an artificial neural network which obtains a mean absolute error and SD of 4.74 ± 5.55 mm Hg for DBP and 9.18 ± 12.57 mm Hg for SBP compared to 6.61 ± 8.04 mm Hg for DBP and 11.12 ± 14.20 mm Hg for SBP without prior knowledge. The inclusion of prior knowledge of the physiological characteristics can improve the accuracy of BP estimation using machine learning methods, and the incorporation of more physiological characteristics enhances the accuracy of the BP estimation.

摘要

传统的血压(BP)测量方法存在许多缺点,例如侵入性、基于袖带或需要手动操作。许多研究都集中在新兴的非侵入性、无袖带和连续血压测量方法上,仅使用光体积描记法来估计血压已经变得很流行。尽管众所周知,主体的生理特征在血压估计中很重要,但这并没有得到广泛的探索。本文提出了一种新的方法,该方法采用光体积描记法和主体生理特征的先验知识来估计舒张压和收缩压。从指尖光体积描记信号中提取的特征以及主体生理特征的先验知识,如性别、年龄、身高、体重和 BMI,用于使用三种不同的机器学习模型来估计 BP:人工神经网络、支持向量机和最小绝对收缩和选择算子回归。当将生理特征的先验知识纳入模型时,BP 估计的准确性优于不考虑生理特征的模型。在这项研究中,表现最好的算法是人工神经网络,它获得的舒张压平均绝对误差和标准差为 4.74±5.55mmHg,收缩压平均绝对误差和标准差为 9.18±12.57mmHg,而没有先验知识的舒张压平均绝对误差和标准差为 6.61±8.04mmHg,收缩压平均绝对误差和标准差为 11.12±14.20mmHg。将生理特征的先验知识纳入机器学习方法可以提高 BP 估计的准确性,并且纳入更多的生理特征可以提高 BP 估计的准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验