Li Fuxiang, Zhao Xiao-Qiang
School of Science, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China.
Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
Bull Math Biol. 2021 Mar 20;83(5):43. doi: 10.1007/s11538-021-00879-3.
In this paper, we propose a periodic reaction-diffusion model of Zika virus with seasonal and spatial heterogeneous structure in host and vector population. We introduce the basic reproduction ratio [Formula: see text] for this model and show that the disease-free periodic solution is globally asymptotically stable if [Formula: see text], while the system admits a globally asymptotically stable positive periodic solution if [Formula: see text]. Numerically, we study the Zika transmission in Rio de Janeiro Municipality, Brazil, and investigate the effects of some model parameters on [Formula: see text]. We find that the neglect of seasonality underestimates the value of [Formula: see text] and the maximum carrying capacity affects the spread of Zika virus.
在本文中,我们提出了一个寨卡病毒的周期性反应扩散模型,该模型在宿主和媒介种群中具有季节性和空间异质性结构。我们为此模型引入了基本再生数[公式:见原文],并表明如果[公式:见原文],则无病周期解是全局渐近稳定的,而如果[公式:见原文],则系统存在全局渐近稳定的正周期解。在数值上,我们研究了巴西里约热内卢市的寨卡病毒传播,并研究了一些模型参数对[公式:见原文]的影响。我们发现忽略季节性会低估[公式:见原文]的值,并且最大承载能力会影响寨卡病毒的传播。