Surface and Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Homi Bhabha National Institute, Kalpakkam, 603102, India.
Health Physics Unit, Nuclear Recycle Board, Bhabha Atomic Research Centre Facilities, HBNI, Kalpakkam, 603102, India.
Chemosphere. 2021 Aug;276:130142. doi: 10.1016/j.chemosphere.2021.130142. Epub 2021 Mar 8.
Graphene oxide (GO) with beneficial functional groups regulates the surface chemistry for catalytic applications. However, the low electrical conductivity of GO invokes further treatments that compromise the above-valued properties. We report an interfacial engineering of GO decorated with SnO quantum dots (QDs) for the visible-light-driven catalysis of dye degradation. Retention of beneficial functional features of GO and QDs in the GO-SnO composite is established by using TEM, FTIR, and Raman spectroscopy techniques. Further, investigations with EXAFS and lifetime-measurements provide the local structure and defects distributions in QDs which are correlated with the improved conductivity. PL and electrochemical impedance spectroscopic measurements help unraveling the charge-transfer across the interface of the GO-SnO composite. The unique ability of ∼94% degradation of MB using only 0.5 mg of GO-SnO catalyst within half an hour under the visible light is demonstrated for the first time with insights on the photocatalytic mechanism.
氧化石墨烯(GO)具有有益的官能团,可调节用于催化应用的表面化学。然而,GO 的低导电性需要进一步处理,这会损害其高价值特性。我们报告了一种界面工程,即用 SnO 量子点(QD)修饰 GO,用于可见光驱动的染料降解催化。通过使用 TEM、FTIR 和拉曼光谱技术,证实了 GO-SnO 复合材料中保留了 GO 和 QD 的有益官能团特征。此外,利用 EXAFS 和寿命测量的研究提供了 QD 中的局部结构和缺陷分布情况,这与改善的导电性有关。PL 和电化学阻抗谱测量有助于揭示 GO-SnO 复合材料界面处的电荷转移。首次展示了仅使用 0.5mg 的 GO-SnO 催化剂在可见光下半小时内即可实现约 94%的 MB 降解,同时还深入探讨了光催化机制。