Suppr超能文献

一种非人类灵长类动物脑机打字接口。

A Non-Human Primate Brain-Computer Typing Interface.

作者信息

Nuyujukian Paul, Kao Jonathan C, Ryu Stephen I, Shenoy Krishna V

机构信息

Neurosurgery Department, the Electrical Engineering Department, the Bioengineering Department, and Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305 USA.

Electrical Engineering Department, Stanford University, Stanford, CA 94305 USA.

出版信息

Proc IEEE Inst Electr Electron Eng. 2017 Jan;105(1):66-72. doi: 10.1109/JPROC.2016.2586967. Epub 2016 Sep 12.

Abstract

Brain-computer interfaces (BCIs) record brain activity and translate the information into useful control signals. They can be used to restore function to people with paralysis by controlling end effectors such as computer cursors and robotic limbs. Communication neural prostheses are BCIs that control user interfaces on computers or mobile devices. Here we demonstrate a communication prosthesis by simulating a typing task with two rhesus macaques implanted with electrode arrays. The monkeys used two of the highest known performing BCI decoders to type out words and sentences when prompted one symbol/letter at a time. On average, Monkeys J and L achieved typing rates of 10.0 and 7.2 words per minute (wpm), respectively, copying text from a newspaper article using a velocity-only two dimensional BCI decoder with dwell-based symbol selection. With a BCI decoder that also featured a discrete click for key selection, typing rates increased to 12.0 and 7.8 wpm. These represent the highest known achieved communication rates using a BCI. We then quantified the relationship between bitrate and typing rate and found it approximately linear: typing rate in wpm is nearly three times bitrate in bits per second. We also compared the metrics of achieved bitrate and information transfer rate and discuss their applicability to real-world typing scenarios. Although this study cannot model the impact of cognitive load of word and sentence planning, the findings here demonstrate the feasibility of BCIs to serve as communication interfaces and represent an upper bound on the expected achieved typing rate for a given BCI throughput.

摘要

脑机接口(BCIs)记录大脑活动并将信息转化为有用的控制信号。它们可用于通过控制诸如电脑光标和机器人肢体等终端效应器,帮助瘫痪患者恢复功能。通信神经假体是用于控制计算机或移动设备上用户界面的脑机接口。在此,我们通过对两只植入电极阵列的恒河猴进行打字任务模拟,展示了一种通信假体。当每次被提示一个符号/字母时,这两只猴子使用两种已知性能最高的脑机接口解码器打出单词和句子。平均而言,猴子J和猴子L分别实现了每分钟10.0个和7.2个单词(wpm)的打字速度,它们使用基于驻留的符号选择的仅速度二维脑机接口解码器,从一篇报纸文章中复制文本。使用还具有用于按键选择的离散点击功能的脑机接口解码器时,打字速度提高到了每分钟12.0个和7.8个单词。这些代表了使用脑机接口所实现的已知最高通信速度。然后,我们量化了比特率与打字速度之间的关系,发现其近似线性:以wpm为单位的打字速度几乎是每秒比特数的比特率的三倍。我们还比较了所实现的比特率和信息传输率的指标,并讨论了它们在实际打字场景中的适用性。尽管本研究无法模拟单词和句子规划的认知负荷的影响,但此处的研究结果证明了脑机接口作为通信接口的可行性,并代表了给定脑机接口吞吐量下预期实现的打字速度的上限。

相似文献

1
A Non-Human Primate Brain-Computer Typing Interface.一种非人类灵长类动物脑机打字接口。
Proc IEEE Inst Electr Electron Eng. 2017 Jan;105(1):66-72. doi: 10.1109/JPROC.2016.2586967. Epub 2016 Sep 12.
5
Performance sustaining intracortical neural prostheses.性能维持型皮层内神经假体
J Neural Eng. 2014 Dec;11(6):066003. doi: 10.1088/1741-2560/11/6/066003. Epub 2014 Oct 13.
7
High-performance brain-to-text communication via handwriting.通过手写实现高性能的脑-文本通信。
Nature. 2021 May;593(7858):249-254. doi: 10.1038/s41586-021-03506-2. Epub 2021 May 12.
9
Brain-computer interfaces: Definitions and principles.脑机接口:定义与原理。
Handb Clin Neurol. 2020;168:15-23. doi: 10.1016/B978-0-444-63934-9.00002-0.

引用本文的文献

3
Neural Decoding for Intracortical Brain-Computer Interfaces.用于皮层内脑机接口的神经解码
Cyborg Bionic Syst. 2023 Jul 28;4:0044. doi: 10.34133/cbsystems.0044. eCollection 2023.
5
Cortical control of a tablet computer by people with paralysis.瘫痪患者对平板电脑的皮层控制。
PLoS One. 2018 Nov 21;13(11):e0204566. doi: 10.1371/journal.pone.0204566. eCollection 2018.

本文引用的文献

3
Clinical translation of a high-performance neural prosthesis.高性能神经假体的临床转化。
Nat Med. 2015 Oct;21(10):1142-5. doi: 10.1038/nm.3953. Epub 2015 Sep 28.
6
Performance sustaining intracortical neural prostheses.性能维持型皮层内神经假体
J Neural Eng. 2014 Dec;11(6):066003. doi: 10.1088/1741-2560/11/6/066003. Epub 2014 Oct 13.
7
A high-performance keyboard neural prosthesis enabled by task optimization.通过任务优化实现的高性能键盘神经假体。
IEEE Trans Biomed Eng. 2015 Jan;62(1):21-29. doi: 10.1109/TBME.2014.2354697. Epub 2014 Sep 4.
8
Intention estimation in brain-machine interfaces.脑机接口中的意图估计。
J Neural Eng. 2014 Feb;11(1):016004. doi: 10.1088/1741-2560/11/1/016004.
10
High-performance neuroprosthetic control by an individual with tetraplegia.高位截瘫患者的高性能神经假体控制。
Lancet. 2013 Feb 16;381(9866):557-64. doi: 10.1016/S0140-6736(12)61816-9. Epub 2012 Dec 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验