Suppr超能文献

脑机接口:定义与原理。

Brain-computer interfaces: Definitions and principles.

作者信息

Wolpaw Jonathan R, Millán José Del R, Ramsey Nick F

机构信息

National Center for Adaptive Neurotechnologies and Stratton VA Medical Center, Wadsworth Center, Albany, NY, United States.

Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, United States; Department of Neurology, The University of Texas at Austin, Austin, TX, United States.

出版信息

Handb Clin Neurol. 2020;168:15-23. doi: 10.1016/B978-0-444-63934-9.00002-0.

Abstract

Throughout life, the central nervous system (CNS) interacts with the world and with the body by activating muscles and excreting hormones. In contrast, brain-computer interfaces (BCIs) quantify CNS activity and translate it into new artificial outputs that replace, restore, enhance, supplement, or improve the natural CNS outputs. BCIs thereby modify the interactions between the CNS and the environment. Unlike the natural CNS outputs that come from spinal and brainstem motoneurons, BCI outputs come from brain signals that represent activity in other CNS areas, such as the sensorimotor cortex. If BCIs are to be useful for important communication and control tasks in real life, the CNS must control these brain signals nearly as reliably and accurately as it controls spinal motoneurons. To do this, they might, for example, need to incorporate software that mimics the function of the subcortical and spinal mechanisms that participate in normal movement control. The realization of high reliability and accuracy is perhaps the most difficult and critical challenge now facing BCI research and development. The ongoing adaptive modifications that maintain effective natural CNS outputs take place primarily in the CNS. The adaptive modifications that maintain effective BCI outputs can also take place in the BCI. This means that the BCI operation depends on the effective collaboration of two adaptive controllers, the CNS and the BCI. Realization of this second adaptive controller, the BCI, and management of its interactions with concurrent adaptations in the CNS comprise another complex and critical challenge for BCI development. BCIs can use different kinds of brain signals recorded in different ways from different brain areas. Decisions about which signals recorded in which ways from which brain areas should be selected for which applications are empirical questions that can only be properly answered by experiments. BCIs, like other communication and control technologies, often face artifacts that contaminate or imitate their chosen signals. Noninvasive BCIs (e.g., EEG- or fNIRS-based) need to take special care to avoid interpreting nonbrain signals (e.g., cranial EMG) as brain signals. This typically requires comprehensive topographical and spectral evaluations. In theory, the outputs of BCIs can select a goal or control a process. In the future, the most effective BCIs will probably be those that combine goal selection and process control so as to distribute control between the BCI and the application in a fashion suited to the current action. Through such distribution, BCIs may most effectively imitate natural CNS operation. The primary measure of BCI development is the extent to which BCI systems benefit people with neuromuscular disorders. Thus, BCI clinical evaluation, validation, and dissemination is a key step. It is at the same time a complex and difficult process that depends on multidisciplinary collaboration and management of the demanding requirements of clinical studies. Twenty-five years ago, BCI research was an esoteric endeavor pursued in only a few isolated laboratories. It is now a steadily growing field that engages many hundreds of scientists, engineers, and clinicians throughout the world in an increasingly interconnected community that is addressing the key issues and pursuing the high potential of BCI technology.

摘要

在整个生命过程中,中枢神经系统(CNS)通过激活肌肉和分泌激素与外界及身体进行交互。相比之下,脑机接口(BCI)对中枢神经系统的活动进行量化,并将其转化为新的人工输出,以替代、恢复、增强、补充或改善自然的中枢神经系统输出。BCI从而改变了中枢神经系统与环境之间的交互。与来自脊髓和脑干运动神经元的自然中枢神经系统输出不同,BCI输出来自代表中枢神经系统其他区域(如感觉运动皮层)活动的脑信号。如果BCI要在现实生活中的重要通信和控制任务中发挥作用,中枢神经系统必须像控制脊髓运动神经元一样可靠且准确地控制这些脑信号。例如,要做到这一点,它们可能需要集成模仿参与正常运动控制的皮层下和脊髓机制功能的软件。实现高可靠性和准确性可能是当前BCI研发面临的最困难和关键的挑战。维持有效自然中枢神经系统输出的持续适应性修改主要发生在中枢神经系统中。维持有效BCI输出的适应性修改也可以在BCI中发生。这意味着BCI的运行依赖于两个自适应控制器——中枢神经系统和BCI的有效协作。实现第二个自适应控制器BCI并管理其与中枢神经系统中同时发生的适应性变化之间的交互,是BCI发展的另一项复杂而关键的挑战。BCI可以使用从不同脑区以不同方式记录的不同类型的脑信号。关于从哪些脑区以何种方式记录的哪些信号应被选用于哪些应用的决策是经验性问题,只有通过实验才能得到恰当解答。与其他通信和控制技术一样,BCI经常面临会污染或模仿其选定信号的伪迹。非侵入性BCI(例如基于脑电图或功能近红外光谱的BCI)需要特别注意避免将非脑信号(例如颅部肌电图)解读为脑信号。这通常需要进行全面的地形和频谱评估。理论上,BCI的输出可以选择目标或控制过程。未来,最有效的BCI可能是那些将目标选择和过程控制相结合,以便以适合当前动作的方式在BCI和应用之间分配控制的BCI。通过这种分配,BCI可能最有效地模仿自然中枢神经系统的运作。BCI发展的主要衡量标准是BCI系统使神经肌肉疾病患者受益的程度。因此,BCI的临床评估、验证和推广是关键步骤。这同时也是一个复杂且困难的过程,依赖于多学科协作以及对临床研究严格要求的管理。二十五年前,BCI研究是一项只有少数几个孤立实验室开展的深奥工作。如今,它已成为一个稳步发展的领域,吸引了全球数百名科学家、工程师和临床医生参与其中,形成了一个联系日益紧密的群体,共同应对关键问题并挖掘BCI技术的巨大潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验