Suppr超能文献

利用最优传输连接新冠疫情动态与人员流动的聚类模式

Clustering Patterns Connecting COVID-19 Dynamics and Human Mobility Using Optimal Transport.

作者信息

Nielsen Frank, Marti Gautier, Ray Sumanta, Pyne Saumyadipta

机构信息

Sony Computer Science Laboratories Inc, Tokyo, Japan.

Independent Researcher, Abu Dhabi, United Arab Emirates.

出版信息

Sankhya B (2008). 2021;83(Suppl 1):167-184. doi: 10.1007/s13571-021-00255-0. Epub 2021 Mar 16.

Abstract

Social distancing and stay-at-home are among the few measures that are known to be effective in checking the spread of a pandemic such as COVID-19 in a given population. The patterns of dependency between such measures and their effects on disease incidence may vary dynamically and across different populations. We described a new computational framework to measure and compare the temporal relationships between human mobility and new cases of COVID-19 across more than 150 cities of the United States with relatively high incidence of the disease. We used a novel application of Optimal Transport for computing the distance between the normalized patterns induced by bivariate time series for each pair of cities. Thus, we identified 10 clusters of cities with similar temporal dependencies, and computed the Wasserstein barycenter to describe the overall dynamic pattern for each cluster. Finally, we used city-specific socioeconomic covariates to analyze the composition of each cluster.

摘要

社交距离和居家隔离是已知的少数几种在特定人群中有效遏制 COVID - 19 等大流行病传播的措施。这些措施及其对疾病发病率的影响之间的依赖模式可能会动态变化,且因不同人群而异。我们描述了一个新的计算框架,用于测量和比较美国 150 多个疾病发病率相对较高的城市中人类流动与 COVID - 19 新病例之间的时间关系。我们使用最优传输的一种新颖应用来计算每对城市由双变量时间序列诱导的归一化模式之间的距离。因此,我们识别出了 10 个具有相似时间依赖性的城市集群,并计算了瓦瑟斯坦质心来描述每个集群的整体动态模式。最后,我们使用特定城市的社会经济协变量来分析每个集群的构成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e30/7961163/950288f0266a/13571_2021_255_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验