Jia Dongjie, Lee Baker Jonathan, Rameau Anaïs, Esmaily Mahdi
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14850, USA.
Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10583, USA.
Phys Fluids (1994). 2021 Jan 1;33(1):013307. doi: 10.1063/5.0036749. Epub 2021 Jan 12.
Clinic encounters of dentists and otolaryngologists inherently expose these specialists to an enhanced risk of severe acute respiratory syndrome coronavirus 2 infection, thus threatening them, their patients, and their practices. In this study, we propose and simulate a helmet design that could be used by patients to minimize the transmission risk by retaining droplets created through coughing. The helmet has a port for accessing the mouth and nose and another port connected to a vacuum source to prevent droplets from exiting through the access port and contaminating the environment or clinical practitioners. We used computational fluid dynamics in conjunction with Lagrangian point-particle tracking to simulate droplet trajectories when a patient coughs while using this device. A range of droplet diameters and different operating conditions were simulated. The results show that 100% of the airborne droplets and 99.6% of all cough droplets are retained by the helmet.
牙医和耳鼻喉科医生的临床诊疗过程使这些专科医生面临感染严重急性呼吸综合征冠状病毒2的更高风险,从而对他们自己、他们的患者以及他们的诊疗工作构成威胁。在本研究中,我们提出并模拟了一种头盔设计,患者可以使用该头盔通过截留咳嗽产生的飞沫来将传播风险降至最低。该头盔有一个用于接触口鼻的端口和另一个连接到真空源的端口,以防止飞沫通过接触端口排出并污染环境或临床医生。我们结合计算流体动力学和拉格朗日点粒子追踪来模拟患者使用该设备咳嗽时的飞沫轨迹。模拟了一系列飞沫直径和不同的操作条件。结果表明,该头盔截留了100%的空气传播飞沫和99.6%的所有咳嗽飞沫。