Komperda Jonathan, Peyvan Ahmad, Li Dongru, Kashir Babak, Yarin Alexander L, Megaridis Constantine M, Mirbod Parisa, Paprotny Igor, Cooper Lyndon F, Rowan Susan, Stanford Clark, Mashayek Farzad
Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA.
Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA.
Phys Fluids (1994). 2021 Mar;33(3):033328. doi: 10.1063/5.0043934. Epub 2021 Mar 29.
COVID-19, caused by the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) virus, has been rapidly spreading worldwide since December 2019, causing a public health crisis. Recent studies showed SARS-CoV-2's ability to infect humans via airborne routes. These motivated the study of aerosol and airborne droplet transmission in a variety of settings. This study performs a large-scale numerical simulation of a real-world dentistry clinic that contains aerosol-generating procedures. The simulation tracks the dispersion of evaporating droplets emitted during ultrasonic dental scaling procedures. The simulation considers 25 patient treatment cubicles in an open plan dentistry clinic. The droplets are modeled as having a volatile (evaporating) and nonvolatile fraction composed of virions, saliva, and impurities from the irrigant water supply. The simulated clinic's boundary and flow conditions are validated against experimental measurements of the real clinic. The results evaluate the behavior of large droplets and aerosols. We investigate droplet residence time and travel distance for different droplet diameters, surface contamination due to droplet settling and deposition, airborne aerosol mass concentration, and the quantity of droplets that escape through ventilation. The simulation results raise concerns due to the aerosols' long residence times (averaging up to 7.31 min) and travel distances (averaging up to 24.45 m) that exceed social distancing guidelines. Finally, the results show that contamination extends beyond the immediate patient treatment areas, requiring additional surface disinfection in the clinic. The results presented in this research may be used to establish safer dental clinic operating procedures, especially if paired with future supplementary material concerning the aerosol viral load generated by ultrasonic scaling and the viral load thresholds required to infect humans.
2019年12月以来,由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引起的新型冠状病毒肺炎(COVID-19)在全球迅速传播,引发了一场公共卫生危机。最近的研究表明,SARS-CoV-2具有通过空气传播途径感染人类的能力。这些研究促使人们对各种环境中的气溶胶和飞沫传播进行研究。本研究对一家包含气溶胶生成操作的真实牙科诊所进行了大规模数值模拟。该模拟跟踪了超声洁牙过程中喷出的蒸发液滴的扩散情况。模拟考虑了一家开放式牙科诊所中的25个患者治疗隔间。液滴被建模为由病毒粒子、唾液和来自冲洗水源的杂质组成的挥发性(蒸发)和非挥发性部分。模拟诊所的边界和流动条件根据真实诊所的实验测量结果进行了验证。结果评估了大液滴和气溶胶的行为。我们研究了不同液滴直径下的液滴停留时间和传播距离、液滴沉降和沉积导致的表面污染、空气中气溶胶质量浓度以及通过通风口逸出的液滴数量。模拟结果令人担忧,因为气溶胶的停留时间较长(平均可达7.31分钟),传播距离较远(平均可达24.45米),超过了社交距离指导原则。最后,结果表明污染范围超出了直接的患者治疗区域,需要对诊所进行额外的表面消毒。本研究提出的结果可用于建立更安全的牙科诊所操作程序,特别是如果与未来关于超声洁牙产生的气溶胶病毒载量以及感染人类所需的病毒载量阈值的补充材料相结合。