Suppr超能文献

用于主题不变生理特征提取的解缠对抗自编码器

Disentangled Adversarial Autoencoder for Subject-Invariant Physiological Feature Extraction.

作者信息

Han Mo, Ozdenizci Özan, Wang Ye, Koike-Akino Toshiaki, Erdoğmuş Deniz

机构信息

Cognitive Systems Laboratory, Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA.

Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA 02139, USA.

出版信息

IEEE Signal Process Lett. 2020;27:1565-1569. doi: 10.1109/lsp.2020.3020215. Epub 2020 Aug 31.

Abstract

Recent developments in biosignal processing have enabled users to exploit their physiological status for manipulating devices in a reliable and safe manner. One major challenge of physiological sensing lies in the variability of biosignals across different users and tasks. To address this issue, we propose an adversarial feature extractor for transfer learning to exploit disentangled universal representations. We consider the trade-off between task-relevant features and user-discriminative information by introducing additional adversary and nuisance networks in order to manipulate the latent representations such that the learned feature extractor is applicable to unknown users and various tasks. Results on cross-subject transfer evaluations exhibit the benefits of the proposed framework, with up to 8.8% improvement in average accuracy of classification, and demonstrate adaptability to a broader range of subjects.

摘要

生物信号处理领域的最新进展使用户能够以可靠且安全的方式利用自身生理状态来操控设备。生理传感面临的一个主要挑战在于生物信号在不同用户和任务之间存在变异性。为解决这一问题,我们提出一种用于迁移学习的对抗特征提取器,以利用解缠的通用表示。我们通过引入额外的对抗网络和干扰网络来考虑任务相关特征与用户判别信息之间的权衡,从而操控潜在表示,使学习到的特征提取器适用于未知用户和各种任务。跨主体迁移评估的结果展示了所提出框架的优势,分类平均准确率提高了8.8%,并证明了其对更广泛主体的适应性。

相似文献

1
Disentangled Adversarial Autoencoder for Subject-Invariant Physiological Feature Extraction.
IEEE Signal Process Lett. 2020;27:1565-1569. doi: 10.1109/lsp.2020.3020215. Epub 2020 Aug 31.
2
Disentangled Adversarial Transfer Learning for Physiological Biosignals.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:422-425. doi: 10.1109/EMBC44109.2020.9175233.
3
Universal Physiological Representation Learning With Soft-Disentangled Rateless Autoencoders.
IEEE J Biomed Health Inform. 2021 Aug;25(8):2928-2937. doi: 10.1109/JBHI.2021.3062335. Epub 2021 Aug 5.
5
Learning Invariant Representations from EEG via Adversarial Inference.
IEEE Access. 2020;8:27074-27085. doi: 10.1109/access.2020.2971600. Epub 2020 Feb 4.
6
Mutual Information-Driven Subject-Invariant and Class-Relevant Deep Representation Learning in BCI.
IEEE Trans Neural Netw Learn Syst. 2023 Feb;34(2):739-749. doi: 10.1109/TNNLS.2021.3100583. Epub 2023 Feb 3.
7
Generalized Generative Deep Learning Models for Biosignal Synthesis and Modality Transfer.
IEEE J Biomed Health Inform. 2023 Feb;27(2):968-979. doi: 10.1109/JBHI.2022.3223777. Epub 2023 Feb 3.
8
Contrastive Adversarial Domain Adaptation Networks for Speaker Recognition.
IEEE Trans Neural Netw Learn Syst. 2022 May;33(5):2236-2245. doi: 10.1109/TNNLS.2020.3044215. Epub 2022 May 2.
9
DC-AAE: Dual channel adversarial autoencoder with multitask learning for KL-grade classification in knee radiographs.
Comput Biol Med. 2023 Dec;167:107570. doi: 10.1016/j.compbiomed.2023.107570. Epub 2023 Oct 13.
10
A Variational Encoder Framework for Decoding Behavior Choices from Neural Data.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:6631-6634. doi: 10.1109/EMBC46164.2021.9630205.

引用本文的文献

2
Universal Physiological Representation Learning With Soft-Disentangled Rateless Autoencoders.
IEEE J Biomed Health Inform. 2021 Aug;25(8):2928-2937. doi: 10.1109/JBHI.2021.3062335. Epub 2021 Aug 5.

本文引用的文献

1
Learning Invariant Representations from EEG via Adversarial Inference.
IEEE Access. 2020;8:27074-27085. doi: 10.1109/access.2020.2971600. Epub 2020 Feb 4.
2
HANDS: a multimodal dataset for modeling toward human grasp intent inference in prosthetic hands.
Intell Serv Robot. 2020 Jan;13(1):179-185. doi: 10.1007/s11370-019-00293-8. Epub 2019 Sep 25.
3
Disentangled Adversarial Transfer Learning for Physiological Biosignals.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:422-425. doi: 10.1109/EMBC44109.2020.9175233.
4
Adversarial Deep Learning in EEG Biometrics.
IEEE Signal Process Lett. 2019 May;26(5):710-714. doi: 10.1109/LSP.2019.2906826. Epub 2019 Mar 27.
5
Time-Series Prediction of Proximal Aggression Onset in Minimally-Verbal Youth with Autism Spectrum Disorder Using Physiological Biosignals.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:5745-5748. doi: 10.1109/EMBC.2018.8513524.
6
Deep learning for healthcare applications based on physiological signals: A review.
Comput Methods Programs Biomed. 2018 Jul;161:1-13. doi: 10.1016/j.cmpb.2018.04.005. Epub 2018 Apr 11.
8
Learning a common dictionary for subject-transfer decoding with resting calibration.
Neuroimage. 2015 May 1;111:167-78. doi: 10.1016/j.neuroimage.2015.02.015. Epub 2015 Feb 13.
9
A wrist-worn biosensor system for assessment of neurological status.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:5748-51. doi: 10.1109/EMBC.2014.6944933.
10
Emotion recognition from EEG using higher order crossings.
IEEE Trans Inf Technol Biomed. 2010 Mar;14(2):186-97. doi: 10.1109/TITB.2009.2034649. Epub 2009 Oct 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验