Özdenizci Ozan, Wang Y E, Koike-Akino Toshiaki, ErdoĞmuŞ Deniz
Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA.
Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA 02139, USA.
IEEE Access. 2020;8:27074-27085. doi: 10.1109/access.2020.2971600. Epub 2020 Feb 4.
Discovering and exploiting shared, invariant neural activity in electroencephalogram (EEG) based classification tasks is of significant interest for generalizability of decoding models across subjects or EEG recording sessions. While deep neural networks are recently emerging as generic EEG feature extractors, this transfer learning aspect usually relies on the prior assumption that deep networks naturally behave as subject- (or session-) invariant EEG feature extractors. We propose a further step towards invariance of EEG deep learning frameworks in a systemic way during model training. We introduce an adversarial inference approach to learn representations that are invariant to inter-subject variabilities within a discriminative setting. We perform experimental studies using a publicly available motor imagery EEG dataset, and state-of-the-art convolutional neural network based EEG decoding models within the proposed adversarial learning framework. We present our results in cross-subject model transfer scenarios, demonstrate neurophysiological interpretations of the learned networks, and discuss potential insights offered by adversarial inference to the growing field of deep learning for EEG.
在基于脑电图(EEG)的分类任务中发现并利用共享的、不变的神经活动,对于解码模型在不同受试者或EEG记录会话间的通用性具有重要意义。虽然深度神经网络最近正成为通用的EEG特征提取器,但这种迁移学习方面通常依赖于一个先验假设,即深度网络自然地表现为受试者(或会话)不变的EEG特征提取器。我们在模型训练期间以系统的方式朝着EEG深度学习框架的不变性迈出了更进一步的一步。我们引入一种对抗推理方法,以在判别设置中学习对受试者间变异性不变的表示。我们使用一个公开可用的运动想象EEG数据集以及所提出的对抗学习框架内基于最先进卷积神经网络的EEG解码模型进行了实验研究。我们在跨受试者模型迁移场景中展示了我们的结果,阐述了所学网络的神经生理学解释,并讨论了对抗推理为EEG深度学习这一不断发展的领域提供的潜在见解。