Suppr超能文献

相似文献

1
Universal Physiological Representation Learning With Soft-Disentangled Rateless Autoencoders.
IEEE J Biomed Health Inform. 2021 Aug;25(8):2928-2937. doi: 10.1109/JBHI.2021.3062335. Epub 2021 Aug 5.
2
Disentangled Adversarial Autoencoder for Subject-Invariant Physiological Feature Extraction.
IEEE Signal Process Lett. 2020;27:1565-1569. doi: 10.1109/lsp.2020.3020215. Epub 2020 Aug 31.
3
Disentangled Adversarial Transfer Learning for Physiological Biosignals.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:422-425. doi: 10.1109/EMBC44109.2020.9175233.
4
Disentangled Representation Learning and Generation With Manifold Optimization.
Neural Comput. 2022 Sep 12;34(10):2009-2036. doi: 10.1162/neco_a_01528.
5
Sequential Variational Autoencoder with Adversarial Classifier for Video Disentanglement.
Sensors (Basel). 2023 Feb 24;23(5):2515. doi: 10.3390/s23052515.
6
A Plug-in Method for Representation Factorization in Connectionist Models.
IEEE Trans Neural Netw Learn Syst. 2022 Aug;33(8):3792-3803. doi: 10.1109/TNNLS.2021.3054480. Epub 2022 Aug 3.
7
Representation learning via Dual-Autoencoder for recommendation.
Neural Netw. 2017 Jun;90:83-89. doi: 10.1016/j.neunet.2017.03.009. Epub 2017 Mar 27.
8
Stain transfer using Generative Adversarial Networks and disentangled features.
Comput Biol Med. 2022 Mar;142:105219. doi: 10.1016/j.compbiomed.2022.105219. Epub 2022 Jan 5.
9
Conditional generation of medical images via disentangled adversarial inference.
Med Image Anal. 2021 Aug;72:102106. doi: 10.1016/j.media.2021.102106. Epub 2021 May 24.
10
Locally Embedding Autoencoders: A Semi-Supervised Manifold Learning Approach of Document Representation.
PLoS One. 2016 Jan 19;11(1):e0146672. doi: 10.1371/journal.pone.0146672. eCollection 2016.

引用本文的文献

1
EAPR: explainable and augmented patient representation learning for disease prediction.
Health Inf Sci Syst. 2023 Nov 14;11(1):53. doi: 10.1007/s13755-023-00256-5. eCollection 2023 Dec.

本文引用的文献

1
Learning Invariant Representations from EEG via Adversarial Inference.
IEEE Access. 2020;8:27074-27085. doi: 10.1109/access.2020.2971600. Epub 2020 Feb 4.
2
Disentangled Adversarial Autoencoder for Subject-Invariant Physiological Feature Extraction.
IEEE Signal Process Lett. 2020;27:1565-1569. doi: 10.1109/lsp.2020.3020215. Epub 2020 Aug 31.
3
HANDS: a multimodal dataset for modeling toward human grasp intent inference in prosthetic hands.
Intell Serv Robot. 2020 Jan;13(1):179-185. doi: 10.1007/s11370-019-00293-8. Epub 2019 Sep 25.
4
Disentangled Adversarial Transfer Learning for Physiological Biosignals.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:422-425. doi: 10.1109/EMBC44109.2020.9175233.
6
Deep learning for healthcare applications based on physiological signals: A review.
Comput Methods Programs Biomed. 2018 Jul;161:1-13. doi: 10.1016/j.cmpb.2018.04.005. Epub 2018 Apr 11.
7
Deep learning with convolutional neural networks for EEG decoding and visualization.
Hum Brain Mapp. 2017 Nov;38(11):5391-5420. doi: 10.1002/hbm.23730. Epub 2017 Aug 7.
9
Learning a common dictionary for subject-transfer decoding with resting calibration.
Neuroimage. 2015 May 1;111:167-78. doi: 10.1016/j.neuroimage.2015.02.015. Epub 2015 Feb 13.
10
A wrist-worn biosensor system for assessment of neurological status.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:5748-51. doi: 10.1109/EMBC.2014.6944933.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验