Dissanayake Theekshana, Fernando Tharindu, Denman Simon, Sridharan Sridha, Fookes Clinton
IEEE J Biomed Health Inform. 2023 Feb;27(2):968-979. doi: 10.1109/JBHI.2022.3223777. Epub 2023 Feb 3.
Generative Adversarial Networks (GANs) are a revolutionary innovation in machine learning that enables the generation of artificial data. Artificial data synthesis is valuable especially in the medical field where it is difficult to collect and annotate real data due to privacy issues, limited access to experts, and cost. While adversarial training has led to significant breakthroughs in the computer vision field, biomedical research has not yet fully exploited the capabilities of generative models for data generation, and for more complex tasks such as biosignal modality transfer. We present a broad analysis on adversarial learning on biosignal data. Our study is the first in the machine learning community to focus on synthesizing 1D biosignal data using adversarial models. We consider three types of deep generative adversarial networks: a classical GAN, an adversarial AE, and a modality transfer GAN; individually designed for biosignal synthesis and modality transfer purposes. We evaluate these methods on multiple datasets for different biosignal modalites, including phonocardiogram (PCG), electrocardiogram (ECG), vectorcardiogram and 12-lead electrocardiogram. We follow subject-independent evaluation protocols, by evaluating the proposed models' performance on completely unseen data to demonstrate generalizability. We achieve superior results in generating biosignals, specifically in conditional generation, by synthesizing realistic samples while preserving domain-relevant characteristics. We also demonstrate insightful results in biosignal modality transfer that can generate expanded representations from fewer input-leads, ultimately making the clinical monitoring setting more convenient for the patient. Furthermore our longer duration ECGs generated, maintain clear ECG rhythmic regions, which has been proven using ad-hoc segmentation models.
生成对抗网络(GANs)是机器学习领域的一项革命性创新,能够生成人工数据。人工数据合成具有重要价值,尤其是在医学领域,由于隐私问题、专家资源获取有限以及成本等因素,难以收集和标注真实数据。虽然对抗训练在计算机视觉领域取得了重大突破,但生物医学研究尚未充分利用生成模型在数据生成方面的能力,以及在生物信号模态转换等更复杂任务中的应用。我们对生物信号数据的对抗学习进行了全面分析。我们的研究是机器学习领域中首个专注于使用对抗模型合成一维生物信号数据的研究。我们考虑了三种类型的深度生成对抗网络:经典GAN、对抗自编码器(AE)和模态转换GAN;它们分别为生物信号合成和模态转换目的而设计。我们在多个不同生物信号模态的数据集上评估了这些方法,包括心音图(PCG)、心电图(ECG)、向量心电图和12导联心电图。我们遵循独立于受试者的评估协议,通过在完全未见过的数据上评估所提出模型的性能来证明其通用性。我们在生成生物信号方面取得了优异的结果,特别是在条件生成方面,通过合成逼真样本同时保留与领域相关的特征。我们还在生物信号模态转换方面展示了有见地的结果,即可以从较少的输入导联生成扩展表示,最终使临床监测环境对患者更加便利。此外,我们生成的较长时长心电图保持了清晰的心电图节律区域,这已通过临时分割模型得到验证。