Yu Shuangyue, Huang Tzu-Hao, Yang Xiaolong, Jiao Chunhai, Yang Jianfu, Chen Yue, Yi Jingang, Su Hao
Lab of Biomechatronics and Intelligent Robotics (BIRO), Department of Mechanical Engineering, The City University of New York, City College, NY, 10023, US.
Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR, 72701, US.
IEEE ASME Trans Mechatron. 2020;25(4):1794-1802. doi: 10.1109/tmech.2020.2995134. Epub 2020 May 18.
High-performance actuators are crucial to enable mechanical versatility of wearable robots, which are required to be lightweight, highly backdrivable, and with high bandwidth. State-of-the-art actuators, e.g., series elastic actuators (SEAs), have to compromise bandwidth to improve compliance (i.e., backdrivability). We describe the design and human-robot interaction modeling of a portable hip exoskeleton based on our custom quasi-direct drive (QDD) actuation (i.e., a high torque density motor with low ratio gear). We also present a model-based performance benchmark comparison of representative actuators in terms of torque capability, control bandwidth, backdrivability, and force tracking accuracy. This paper aims to corroborate the underlying philosophy of "design for control", namely meticulous robot design can simplify control algorithms while ensuring high performance. Following this idea, we create a lightweight bilateral hip exoskeleton to reduce joint loadings during normal activities, including walking and squatting. Experiments indicate that the exoskeleton is able to produce high nominal torque (17.5 Nm), high backdrivability (0.4 Nm backdrive torque), high bandwidth (62.4 Hz), and high control accuracy (1.09 Nm root mean square tracking error, 5.4% of the desired peak torque). Its controller is versatile to assist walking at different speeds and squatting. This work demonstrates performance improvement compared with state-of-the-art exoskeletons.
高性能致动器对于实现可穿戴机器人的机械多功能性至关重要,这种机器人需要具备轻量化、高回驱性和高带宽的特点。目前的先进致动器,例如串联弹性致动器(SEA),必须在带宽上做出妥协以提高柔顺性(即回驱性)。我们描述了一种基于定制准直接驱动(QDD)致动(即一种具有低传动比齿轮的高扭矩密度电机)的便携式髋部外骨骼的设计和人机交互建模。我们还给出了一个基于模型的具有代表性的致动器在扭矩能力、控制带宽、回驱性和力跟踪精度方面的性能基准比较。本文旨在证实“为控制而设计”的基本理念,即精心的机器人设计可以简化控制算法,同时确保高性能。遵循这一理念,我们制造了一种轻量化的双侧髋部外骨骼,以减轻包括行走和蹲坐在内的正常活动期间的关节负荷。实验表明,该外骨骼能够产生高额定扭矩(17.5牛米)、高回驱性(0.4牛米的回驱扭矩)、高带宽(62.4赫兹)和高控制精度(1.09牛米的均方根跟踪误差,为所需峰值扭矩的5.4%)。其控制器具有通用性,能够辅助不同速度的行走和蹲坐。这项工作展示了与目前先进外骨骼相比的性能提升。