Suppr超能文献

一种用于下肢外骨骼的任务无关型能量整形控制的模块化框架。

A Modular Framework for Task-Agnostic, Energy Shaping Control of Lower Limb Exoskeletons.

作者信息

Lin Jianping, Thomas Gray C, Divekar Nikhil V, Peddinti Vamsi, Gregg Robert D

机构信息

State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. He was with the Department of Robotics, University of Michigan, Ann Arbor, MI 48109, USA.

Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA. He was with the Department of Robotics, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

IEEE Trans Control Syst Technol. 2024 Nov;32(6):2359-2375. doi: 10.1109/tcst.2024.3429908. Epub 2024 Jul 30.

Abstract

Various backdrivable lower-limb exoskeletons have demonstrated the electromechanical capability to assist volitional motions of able-bodied users and people with mild to moderate gait disorders, but there does not exist a control framework that can be deployed on any joint(s) to assist any activity of daily life in a provably stable manner. This paper presents the modular, multi-task optimal energy shaping () framework, which uses a convex, data-driven optimization to train an analytical control model to instantaneously determine assistive joint torques across activities for any lower-limb exoskeleton joint configuration. The presented modular energy basis is sufficiently descriptive to fit normative human joint torques (given normative feedback from signals available to a given joint configuration) across sit-stand transitions, stair ascent/descent, ramp ascent/descent, and level walking at different speeds. We evaluated controllers for four joint configurations (unilateral/bilateral, hip/knee) of the modular backdrivable lower limb unloading exoskeleton (M-BLUE) exoskeleton on eight able-bodied users navigating a multi-activity circuit. The two unilateral conditions significantly lowered overall muscle activation across all tasks and subjects ( < 0.001). In contrast, bilateral configurations had a minimal impact, possibly attributable to device weight and physical constraints.

摘要

各种具有反向驱动能力的下肢外骨骼已展示出机电能力,可辅助身体健全的使用者以及患有轻度至中度步态障碍的人的自主运动,但目前还不存在一种能以可证明的稳定方式部署在任何关节上以辅助任何日常生活活动的控制框架。本文提出了模块化多任务最优能量塑造()框架,该框架使用凸数据驱动优化来训练一个分析控制模型,以便针对任何下肢外骨骼关节配置瞬间确定跨活动的辅助关节扭矩。所提出的模块化能量基础具有足够的描述性,能够拟合在不同速度下的坐立转换、上楼梯/下楼梯、上斜坡/下斜坡以及平地行走过程中规范的人体关节扭矩(给定来自给定关节配置可用信号的规范反馈)。我们在八名身体健全的使用者在多活动回路中导航时,对模块化反向驱动下肢卸载外骨骼(M - BLUE)外骨骼的四种关节配置(单侧/双侧,髋/膝)的控制器进行了评估。两种单侧配置在所有任务和受试者中显著降低了总体肌肉激活(<0.001)。相比之下,双侧配置的影响最小,这可能归因于设备重量和物理限制。

相似文献

1
A Modular Framework for Task-Agnostic, Energy Shaping Control of Lower Limb Exoskeletons.
IEEE Trans Control Syst Technol. 2024 Nov;32(6):2359-2375. doi: 10.1109/tcst.2024.3429908. Epub 2024 Jul 30.
3
Optimal Energy Shaping Control for a Backdrivable Hip Exoskeleton.
Proc Am Control Conf. 2023;2023:2065-2070. doi: 10.23919/acc55779.2023.10155839. Epub 2023 Jul 3.
4
Improving Task-Agnostic Energy Shaping Control of Powered Exoskeletons with Task/Gait Classification.
IEEE Robot Autom Lett. 2024 Aug;9(8):6848-6855. doi: 10.1109/lra.2024.3414259. Epub 2024 Jun 13.
5
Enhancing Voluntary Motion with Modular, Backdrivable, Powered Hip and Knee Orthoses.
IEEE Robot Autom Lett. 2022 Jul;7(3):6155-6162. doi: 10.1109/LRA.2022.3145580. Epub 2022 Jan 25.
6
A versatile knee exoskeleton mitigates quadriceps fatigue in lifting, lowering, and carrying tasks.
Sci Robot. 2024 Sep 18;9(94):eadr8282. doi: 10.1126/scirobotics.adr8282.
7
Model-based control for exoskeletons with series elastic actuators evaluated on sit-to-stand movements.
J Neuroeng Rehabil. 2019 Jun 3;16(1):65. doi: 10.1186/s12984-019-0526-8.
9
Lower limb joint biomechanics-based identification of gait transitions in between level walking and stair ambulation.
PLoS One. 2020 Sep 16;15(9):e0239148. doi: 10.1371/journal.pone.0239148. eCollection 2020.

引用本文的文献

1
A Task-Agnostic Knee Exoskeleton for Reducing Osteoarthritis Pain Across Activities of Daily Life: A Pilot Study.
IEEE Int Conf Rehabil Robot. 2025 May;2025:1437-1443. doi: 10.1109/ICORR66766.2025.11063102.
2
A Task-Agnostic Hip Exoskeleton for Osteoarthritis Pain Relief: Energetic Control Across Activities of Daily Life.
IEEE Int Conf Rehabil Robot. 2025 May;2025:1299-1306. doi: 10.1109/ICORR66766.2025.11063157.
3
Design and Validation of a Modular, Backdrivable Ankle Exoskeleton.
Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2024 Sep;2024:1454-1460. doi: 10.1109/biorob60516.2024.10719721. Epub 2024 Oct 23.

本文引用的文献

1
Estimating human joint moments unifies exoskeleton control, reducing user effort.
Sci Robot. 2024 Mar 20;9(88):eadi8852. doi: 10.1126/scirobotics.adi8852.
2
Optimal Energy Shaping Control for a Backdrivable Hip Exoskeleton.
Proc Am Control Conf. 2023;2023:2065-2070. doi: 10.23919/acc55779.2023.10155839. Epub 2023 Jul 3.
3
Real-Time Gait Phase and Task Estimation for Controlling a Powered Ankle Exoskeleton on Extremely Uneven Terrain.
IEEE Trans Robot. 2023 Jun;39(3):2170-2182. doi: 10.1109/tro.2023.3235584. Epub 2023 Jan 23.
5
Enhancing Voluntary Motion with Modular, Backdrivable, Powered Hip and Knee Orthoses.
IEEE Robot Autom Lett. 2022 Jul;7(3):6155-6162. doi: 10.1109/LRA.2022.3145580. Epub 2022 Jan 25.
7
Subject-Independent Continuous Locomotion Mode Classification for Robotic Hip Exoskeleton Applications.
IEEE Trans Biomed Eng. 2022 Oct;69(10):3234-3242. doi: 10.1109/TBME.2022.3165547. Epub 2022 Sep 19.
8
Design Principles for Compact, Backdrivable Actuation in Partial-Assist Powered Knee Orthoses.
IEEE ASME Trans Mechatron. 2021 Dec;26(6):3104-3115. doi: 10.1109/tmech.2021.3053226. Epub 2021 Jan 20.
9
Formulating and Deploying Strength Amplification Controllers for Lower-Body Walking Exoskeletons.
Front Robot AI. 2021 Sep 27;8:720231. doi: 10.3389/frobt.2021.720231. eCollection 2021.
10
Powered hip exoskeleton improves walking economy in individuals with above-knee amputation.
Nat Med. 2021 Oct;27(10):1783-1788. doi: 10.1038/s41591-021-01515-2. Epub 2021 Oct 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验