Suppr超能文献

电润湿激光扫描仪的校准与特性

Calibration and characteristics of an electrowetting laser scanner.

作者信息

Lim Wei Yang, Zohrabi Mo, Gopinath Juliet T, Bright Victor M

机构信息

Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309 USA.

Department of Electrical Engineering, University of Colorado, Boulder, CO 80309 USA.

出版信息

IEEE Sens J. 2020 Apr 1;20(7):3496-3503. doi: 10.1109/jsen.2019.2959792. Epub 2019 Dec 16.

Abstract

We present a calibration method to correct for fabrication variations and optical misalignment in a two-dimensional electrowetting scanner. These scanners are an attractive option due to being transmissive, nonmechanical, having a large scan angle (±13.7°), and low power consumption (W). Fabrication imperfections lead to non-uniform deposition of the dielectric or hydrophobic layer which results in actuation inconsistency of each electrode. To demonstrate our calibration method, we scan a 5 × 5 grid target using a four-electrode electrowetting prism and observe a pincushion type optical distortion in the imaging plane. Zemax optical simulations verify that the symmetric distortion is due to the projection of a radial scanning surface onto a flat imaging plane, while in experiment we observe asymmetrical distortion due to optical misalignment and fabrication imperfections. By adjusting the actuation voltages through an iterative Delaunay triangulation interpolation method, the distortion is corrected and saw an improvement in the mean error across 25 grid points from 43 m (0.117°) to 10 m (0.027°).

摘要

我们提出了一种校准方法,用于校正二维电润湿扫描仪中的制造差异和光学失准。由于具有透射性、非机械性、大扫描角度(±13.7°)和低功耗(W),这些扫描仪是一个有吸引力的选择。制造缺陷会导致电介质或疏水层的沉积不均匀,从而导致每个电极的驱动不一致。为了演示我们的校准方法,我们使用四电极电润湿棱镜扫描一个5×5网格目标,并在成像平面中观察到枕形光学畸变。Zemax光学模拟验证了对称畸变是由于径向扫描表面投影到平坦成像平面上,而在实验中,我们观察到由于光学失准和制造缺陷导致的不对称畸变。通过迭代德劳内三角剖分插值方法调整驱动电压,畸变得到校正,并且25个网格点的平均误差从43米(0.117°)提高到10米(0.027°)。

相似文献

1
Calibration and characteristics of an electrowetting laser scanner.
IEEE Sens J. 2020 Apr 1;20(7):3496-3503. doi: 10.1109/jsen.2019.2959792. Epub 2019 Dec 16.
2
Lidar system with nonmechanical electrowetting-based wide-angle beam steering.
Opt Express. 2019 Feb 18;27(4):4404-4415. doi: 10.1364/OE.27.004404.
3
High extinction ratio, low insertion loss, optical switch based on an electrowetting prism.
Opt Express. 2020 Mar 2;28(5):5991-6001. doi: 10.1364/OE.381565.
4
Nonmechanical three-dimensional beam steering using electrowetting-based liquid lens and liquid prism.
Opt Express. 2019 Dec 9;27(25):36757-36766. doi: 10.1364/OE.27.036757.
5
Two-photon laser scanning microscopy with electrowetting-based prism scanning.
Biomed Opt Express. 2017 Nov 7;8(12):5412-5426. doi: 10.1364/BOE.8.005412. eCollection 2017 Dec 1.
6
Optofluidic laser scanner based on a rotating liquid prism.
Appl Opt. 2016 Mar 20;55(9):2136-42. doi: 10.1364/AO.55.002136.
7
Ultra-low voltage electrowetting using graphite surfaces.
Soft Matter. 2016 Oct 26;12(42):8798-8804. doi: 10.1039/c6sm01565d.
8
Design and analysis of a low actuation voltage electrowetting-on-dielectric microvalve for drug delivery applications.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:4423-6. doi: 10.1109/EMBC.2014.6944605.
9
Fabrication and Actuation of an Electrowetting Droplet Array on a Flexible Substrate.
Micromachines (Basel). 2017 Nov 18;8(11):334. doi: 10.3390/mi8110334.
10
Electrowetting without external voltage using paint-on electrodes.
Lab Chip. 2017 Mar 14;17(6):1069-1075. doi: 10.1039/c6lc01500j.

本文引用的文献

1
MEMS-in-the-lens architecture for a miniature high-NA laser scanning microscope.
Light Sci Appl. 2019 Jun 26;8:59. doi: 10.1038/s41377-019-0167-5. eCollection 2019.
2
Lidar system with nonmechanical electrowetting-based wide-angle beam steering.
Opt Express. 2019 Feb 18;27(4):4404-4415. doi: 10.1364/OE.27.004404.
3
Liquid Combination with High Refractive Index Contrast and Fast Scanning Speeds for Electrowetting Adaptive Optics.
Langmuir. 2018 Dec 4;34(48):14511-14518. doi: 10.1021/acs.langmuir.8b02849. Epub 2018 Nov 20.
4
Two-photon laser scanning microscopy with electrowetting-based prism scanning.
Biomed Opt Express. 2017 Nov 7;8(12):5412-5426. doi: 10.1364/BOE.8.005412. eCollection 2017 Dec 1.
5
Numerical analysis of wavefront aberration correction using multielectrode electrowetting-based devices.
Opt Express. 2017 Dec 11;25(25):31451-31461. doi: 10.1364/OE.25.031451.
6
Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice.
Nat Methods. 2017 Jul;14(7):713-719. doi: 10.1038/nmeth.4305. Epub 2017 May 29.
7
Toward individually tunable compound eyes with transparent graphene electrode.
Bioinspir Biomim. 2017 Jun 8;12(4):046002. doi: 10.1088/1748-3190/aa7084.
8
Aberration control in adaptive optics: a numerical study of arbitrarily deformable liquid lenses.
Opt Express. 2017 Mar 20;25(6):6700-6711. doi: 10.1364/OE.25.006700.
9
Tubular astigmatism-tunable fluidic lens.
Opt Lett. 2016 Jun 15;41(12):2735-8. doi: 10.1364/OL.41.002735.
10
Optofluidic laser scanner based on a rotating liquid prism.
Appl Opt. 2016 Mar 20;55(9):2136-42. doi: 10.1364/AO.55.002136.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验