Suppr超能文献

HN-CNN:一种基于卷积神经网络的异构网络,用于mG位点疾病关联预测。

HN-CNN: A Heterogeneous Network Based on Convolutional Neural Network for m G Site Disease Association Prediction.

作者信息

Zhang Lin, Chen Jin, Ma Jiani, Liu Hui

机构信息

Engineering Research Center of Intelligent Control for Underground Space, Ministry of Education, China University of Mining and Technology, Xuzhou, China.

School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China.

出版信息

Front Genet. 2021 Mar 4;12:655284. doi: 10.3389/fgene.2021.655284. eCollection 2021.

Abstract

N-methylguanosine (mG) is a typical positively charged RNA modification, playing a vital role in transcriptional regulation. mG can affect the biological processes of mRNA and tRNA and has associations with multiple diseases including cancers. Wet-lab experiments are cost and time ineffective for the identification of disease-related mG sites. Thus, a heterogeneous network method based on Convolutional Neural Networks (HN-CNN) has been proposed to predict unknown associations between mG sites and diseases. HN-CNN constructs a heterogeneous network with mG site similarity, disease similarity, and disease-associated mG sites to formulate features for mG site-disease pairs. Next, a convolutional neural network (CNN) obtains multidimensional and irrelevant features prominently. Finally, XGBoost is adopted to predict the association between mG sites and diseases. The performance of HN-CNN is compared with Naive Bayes (NB), Random Forest (RF), Support Vector Machine (SVM), as well as Gradient Boosting Decision Tree (GBDT) through 10-fold cross-validation. The average AUC of HN-CNN is 0.827, which is superior to others.

摘要

N-甲基鸟苷(mG)是一种典型的带正电荷的RNA修饰,在转录调控中起着至关重要的作用。mG可影响mRNA和tRNA的生物学过程,并与包括癌症在内的多种疾病相关。湿实验室实验在识别与疾病相关的mG位点方面成本高且效率低。因此,已提出一种基于卷积神经网络的异质网络方法(HN-CNN)来预测mG位点与疾病之间的未知关联。HN-CNN构建一个包含mG位点相似性、疾病相似性和疾病相关mG位点的异质网络,为mG位点-疾病对制定特征。接下来,卷积神经网络(CNN)显著获取多维且不相关的特征。最后,采用XGBoost来预测mG位点与疾病之间的关联。通过10折交叉验证,将HN-CNN的性能与朴素贝叶斯(NB)、随机森林(RF)、支持向量机(SVM)以及梯度提升决策树(GBDT)进行比较。HN-CNN的平均AUC为0.827,优于其他方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/537b/7970120/57d4361f504e/fgene-12-655284-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验