Suppr超能文献

利用非小细胞肺癌脑转移的MRI影像组学预测生存时间

Predicting Survival Duration With MRI Radiomics of Brain Metastases From Non-small Cell Lung Cancer.

作者信息

Chen Bihong T, Jin Taihao, Ye Ningrong, Mambetsariev Isa, Wang Tao, Wong Chi Wah, Chen Zikuan, Rockne Russell C, Colen Rivka R, Holodny Andrei I, Sampath Sagus, Salgia Ravi

机构信息

Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, United States.

Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, United States.

出版信息

Front Oncol. 2021 Mar 5;11:621088. doi: 10.3389/fonc.2021.621088. eCollection 2021.

Abstract

Brain metastases are associated with poor survival. Molecular genetic testing informs on targeted therapy and survival. The purpose of this study was to perform a MR imaging-based radiomic analysis of brain metastases from non-small cell lung cancer (NSCLC) to identify radiomic features that were important for predicting survival duration. We retrospectively identified our study cohort via an institutional database search for patients with brain metastases from EGFR, ALK, and/or KRAS mutation-positive NSCLC. We segmented the brain metastatic tumors on the brain MR images, extracted radiomic features, constructed radiomic scores from significant radiomic features based on multivariate Cox regression analysis ( < 0.05), and built predictive models for survival duration. Of the 110 patients in the cohort (mean age 57.51 ± 12.32 years; range: 22-85 years, M:F = 37:73), 75, 26, and 15 had NSCLC with EGFR, ALK, and KRAS mutations, respectively. Predictive modeling of survival duration using both clinical and radiomic features yielded areas under the receiver operative characteristic curve of 0.977, 0.905, and 0.947 for the EGFR, ALK, and KRAS mutation-positive groups, respectively. Radiomic scores enabled the separation of each mutation-positive group into two subgroups with significantly different survival durations, i.e., shorter vs. longer duration when comparing to the median survival duration of the group. Our data supports the use of radiomic scores, based on MR imaging of brain metastases from NSCLC, as non-invasive biomarkers for survival duration. Future research with a larger sample size and external cohorts is needed to validate our results.

摘要

脑转移与较差的生存率相关。分子基因检测可为靶向治疗和生存情况提供信息。本研究的目的是对非小细胞肺癌(NSCLC)脑转移灶进行基于磁共振成像(MR)的放射组学分析,以识别对预测生存时间重要的放射组学特征。我们通过机构数据库检索,回顾性确定了研究队列,纳入了表皮生长因子受体(EGFR)、间变性淋巴瘤激酶(ALK)和/或KRAS突变阳性NSCLC脑转移患者。我们在脑部MR图像上对脑转移瘤进行分割,提取放射组学特征,基于多变量Cox回归分析(<0.05)从显著的放射组学特征构建放射组学评分,并建立生存时间预测模型。队列中的110例患者(平均年龄57.51±12.32岁;范围:22 - 85岁,男:女 = 37:73),分别有75例、26例和15例NSCLC患者发生EGFR、ALK和KRAS突变。使用临床和放射组学特征对生存时间进行预测建模,EGFR、ALK和KRAS突变阳性组的受试者操作特征曲线下面积分别为0.977、0.905和0.947。放射组学评分能够将每个突变阳性组分为两个生存时间显著不同的亚组,即与该组中位生存时间相比,生存时间较短与较长的亚组。我们的数据支持基于NSCLC脑转移灶MR成像的放射组学评分作为生存时间的非侵入性生物标志物。需要更大样本量和外部队列的进一步研究来验证我们的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea73/7973105/9485cdd99126/fonc-11-621088-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验