School of Electronic and Electrical Engineering, Sungkyunkwan University, Jangan-gu, Suwon, Korea.
Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Jangan-gu, Suwon, Korea.
Clin Cancer Res. 2018 Oct 1;24(19):4705-4714. doi: 10.1158/1078-0432.CCR-17-3783. Epub 2018 Jun 18.
To develop a radiomics signature based on preoperative MRI to estimate disease-free survival (DFS) in patients with invasive breast cancer and to establish a radiomics nomogram that incorporates the radiomics signature and MRI and clinicopathological findings. We identified 294 patients with invasive breast cancer who underwent preoperative MRI. Patients were randomly divided into training ( = 194) and validation ( = 100) sets. A radiomics signature (Rad-score) was generated using an elastic net in the training set, and the cutoff point of the radiomics signature to divide the patients into high- and low-risk groups was determined using receiver-operating characteristic curve analysis. Univariate and multivariate Cox proportional hazards model and Kaplan-Meier analysis were used to determine the association of the radiomics signature, MRI findings, and clinicopathological variables with DFS. A radiomics nomogram combining the Rad-score and MRI and clinicopathological findings was constructed to validate the radiomic signatures for individualized DFS estimation. Higher Rad-scores were significantly associated with worse DFS in both the training and validation sets ( = 0.002 and 0.036, respectively). The radiomics nomogram estimated DFS [C-index, 0.76; 95% confidence interval (CI); 0.74-0.77] better than the clinicopathological (C-index, 0.72; 95% CI, 0.70-0.74) or Rad-score-only nomograms (C-index, 0.67; 95% CI, 0.65-0.69). The radiomics signature is an independent biomarker for the estimation of DFS in patients with invasive breast cancer. Combining the radiomics nomogram improved individualized DFS estimation. .
为了开发一种基于术前 MRI 的放射组学特征,以预测浸润性乳腺癌患者的无病生存(DFS),并建立一个纳入放射组学特征以及 MRI 和临床病理发现的放射组学列线图。我们纳入了 294 例接受术前 MRI 的浸润性乳腺癌患者。患者被随机分为训练集(n = 194)和验证集(n = 100)。在训练集中,使用弹性网络生成放射组学特征(Rad-score),并使用接受者操作特征曲线分析确定将患者分为高风险和低风险组的放射组学特征的截断点。使用单变量和多变量 Cox 比例风险模型以及 Kaplan-Meier 分析来确定放射组学特征、MRI 发现以及临床病理变量与 DFS 的相关性。构建了一个结合 Rad-score 和 MRI 及临床病理发现的放射组学列线图,以验证放射组学特征在个体化 DFS 估计中的应用。在训练集和验证集中,较高的 Rad-score 与更差的 DFS 显著相关(p = 0.002 和 0.036)。放射组学列线图预测 DFS 的效果优于临床病理(C 指数,0.72;95%置信区间 [CI],0.70-0.74)或仅基于 Rad-score 的列线图(C 指数,0.67;95%CI,0.65-0.69)。放射组学特征是预测浸润性乳腺癌患者 DFS 的独立生物标志物。结合放射组学列线图可提高个体化 DFS 估计的准确性。
Breast Cancer (Dove Med Press). 2025-7-8
Insights Imaging. 2025-7-1