文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

磁共振成像放射组学特征与浸润性乳腺癌患者无病生存的相关性。

Radiomics Signature on Magnetic Resonance Imaging: Association with Disease-Free Survival in Patients with Invasive Breast Cancer.

机构信息

School of Electronic and Electrical Engineering, Sungkyunkwan University, Jangan-gu, Suwon, Korea.

Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Jangan-gu, Suwon, Korea.

出版信息

Clin Cancer Res. 2018 Oct 1;24(19):4705-4714. doi: 10.1158/1078-0432.CCR-17-3783. Epub 2018 Jun 18.


DOI:10.1158/1078-0432.CCR-17-3783
PMID:29914892
Abstract

To develop a radiomics signature based on preoperative MRI to estimate disease-free survival (DFS) in patients with invasive breast cancer and to establish a radiomics nomogram that incorporates the radiomics signature and MRI and clinicopathological findings. We identified 294 patients with invasive breast cancer who underwent preoperative MRI. Patients were randomly divided into training ( = 194) and validation ( = 100) sets. A radiomics signature (Rad-score) was generated using an elastic net in the training set, and the cutoff point of the radiomics signature to divide the patients into high- and low-risk groups was determined using receiver-operating characteristic curve analysis. Univariate and multivariate Cox proportional hazards model and Kaplan-Meier analysis were used to determine the association of the radiomics signature, MRI findings, and clinicopathological variables with DFS. A radiomics nomogram combining the Rad-score and MRI and clinicopathological findings was constructed to validate the radiomic signatures for individualized DFS estimation. Higher Rad-scores were significantly associated with worse DFS in both the training and validation sets ( = 0.002 and 0.036, respectively). The radiomics nomogram estimated DFS [C-index, 0.76; 95% confidence interval (CI); 0.74-0.77] better than the clinicopathological (C-index, 0.72; 95% CI, 0.70-0.74) or Rad-score-only nomograms (C-index, 0.67; 95% CI, 0.65-0.69). The radiomics signature is an independent biomarker for the estimation of DFS in patients with invasive breast cancer. Combining the radiomics nomogram improved individualized DFS estimation. .

摘要

为了开发一种基于术前 MRI 的放射组学特征,以预测浸润性乳腺癌患者的无病生存(DFS),并建立一个纳入放射组学特征以及 MRI 和临床病理发现的放射组学列线图。我们纳入了 294 例接受术前 MRI 的浸润性乳腺癌患者。患者被随机分为训练集(n = 194)和验证集(n = 100)。在训练集中,使用弹性网络生成放射组学特征(Rad-score),并使用接受者操作特征曲线分析确定将患者分为高风险和低风险组的放射组学特征的截断点。使用单变量和多变量 Cox 比例风险模型以及 Kaplan-Meier 分析来确定放射组学特征、MRI 发现以及临床病理变量与 DFS 的相关性。构建了一个结合 Rad-score 和 MRI 及临床病理发现的放射组学列线图,以验证放射组学特征在个体化 DFS 估计中的应用。在训练集和验证集中,较高的 Rad-score 与更差的 DFS 显著相关(p = 0.002 和 0.036)。放射组学列线图预测 DFS 的效果优于临床病理(C 指数,0.72;95%置信区间 [CI],0.70-0.74)或仅基于 Rad-score 的列线图(C 指数,0.67;95%CI,0.65-0.69)。放射组学特征是预测浸润性乳腺癌患者 DFS 的独立生物标志物。结合放射组学列线图可提高个体化 DFS 估计的准确性。

相似文献

[1]
Radiomics Signature on Magnetic Resonance Imaging: Association with Disease-Free Survival in Patients with Invasive Breast Cancer.

Clin Cancer Res. 2018-6-18

[2]
MRI-Based Radiomic Signature as a Prognostic Biomarker for HER2-Positive Invasive Breast Cancer Treated with NAC.

Cancer Manag Res. 2020-10-27

[3]
Development and Validation of a Preoperative Magnetic Resonance Imaging Radiomics-Based Signature to Predict Axillary Lymph Node Metastasis and Disease-Free Survival in Patients With Early-Stage Breast Cancer.

JAMA Netw Open. 2020-12-1

[4]
Radiomics nomogram for predicting disease-free survival after partial resection or radical cystectomy in patients with bladder cancer.

Br J Radiol. 2024-1-23

[5]
Radiomics Signature: A Potential Biomarker for the Prediction of Disease-Free Survival in Early-Stage (I or II) Non-Small Cell Lung Cancer.

Radiology. 2016-6-27

[6]
Ultrasound-Based Radiomics Analysis for Predicting Disease-Free Survival of Invasive Breast Cancer.

Front Oncol. 2021-4-29

[7]
Multiparametric MRI-based radiomics nomogram for preoperative prediction of lymphovascular invasion and clinical outcomes in patients with breast invasive ductal carcinoma.

Eur Radiol. 2022-6

[8]
Radiomics nomogram for preoperative prediction of progression-free survival using diffusion-weighted imaging in patients with muscle-invasive bladder cancer.

Eur J Radiol. 2020-10

[9]
Association of MRI-derived radiomic biomarker with disease-free survival in patients with early-stage cervical cancer.

Theranostics. 2020

[10]
A Combined Nomogram Model to Predict Disease-free Survival in Triple-Negative Breast Cancer Patients With Neoadjuvant Chemotherapy.

Front Genet. 2021-11-12

引用本文的文献

[1]
Heterogeneity Assessment of Breast Cancer Tumor Microenvironment: Multiparametric Quantitative Analysis with DCE-MRI and Discovery of Radiomics Biomarkers.

Breast Cancer (Dove Med Press). 2025-7-8

[2]
Developments in MRI radiomics research for vascular cognitive impairment.

Insights Imaging. 2025-7-1

[3]
Preliminary Evaluation of Radiomics in Contrast-Enhanced Mammography for Prognostic Prediction of Breast Cancer.

Cancers (Basel). 2025-6-10

[4]
Role of radiomics in predicting early disease recurrence in locally advanced breast cancer patients: integration of radiomic features and RECIST criteria.

Radiol Med. 2025-5

[5]
Enhancing prognostic accuracy in invasive breast cancer by combining contrast-enhanced ultrasound and clinical data: a multicenter retrospective study.

Transl Cancer Res. 2025-2-28

[6]
Predictive value of tumoral and peritumoral radiomic features in neoadjuvant chemotherapy response for breast cancer: a retrospective study.

Radiol Med. 2025-2-24

[7]
Survival outcome prediction of esophageal squamous cell carcinoma patients based on radiomics and mutation signature.

Cancer Imaging. 2025-1-31

[8]
Automated classification of pathological differentiation in head and neck squamous cell carcinoma using combined radiomics models from CET1WI and T2WI.

Clin Oral Investig. 2024-12-21

[9]
Metabolic checkpoints in glioblastomas: targets for new therapies and non-invasive detection.

Front Oncol. 2024-11-29

[10]
Automatic segmentation-based multi-modal radiomics analysis of US and MRI for predicting disease-free survival of breast cancer: a multicenter study.

Breast Cancer Res. 2024-11-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索