Suppr超能文献

具有广泛化学覆盖范围的克鲁兹蛋白酶抑制剂预测性全局模型。

Predictive Global Models of Cruzain Inhibitors with Large Chemical Coverage.

作者信息

Rosas-Jimenez Jose Guadalupe, Garcia-Revilla Marco A, Madariaga-Mazon Abraham, Martinez-Mayorga Karina

机构信息

Division de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico.

Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico.

出版信息

ACS Omega. 2021 Mar 5;6(10):6722-6735. doi: 10.1021/acsomega.0c05645. eCollection 2021 Mar 16.

Abstract

Chagas disease affects 8-11 million people worldwide, most of them living in Latin America. Moreover, migratory phenomena have spread the infection beyond endemic areas. Efforts for the development of new pharmacological therapies are paramount as the pharmacological profile of the two marketed drugs currently available, nifurtimox and benznidazole, needs to be improved. Cruzain, a parasitic cysteine protease, is one of the most attractive biological targets due to its roles in parasite survival and immune evasion. In this work, we compiled and curated a database of diverse cruzain inhibitors previously reported in the literature. From this data set, quantitative structure-activity relationship (QSAR) models for the prediction of their pIC values were generated using -nearest neighbors and random forest algorithms. Local and global models were calculated and compared. The statistical parameters for internal and external validation indicate a significant predictability, with values around 0.66 and 0.61 and external coefficients of 0.725 and 0.766. The applicability domain is quantitatively defined, according to QSAR good practices, using the leverage and similarity methods. The models described in this work are readily available in a Python script for the discovery of novel cruzain inhibitors.

摘要

恰加斯病影响着全球800万至1100万人,其中大多数生活在拉丁美洲。此外,人口迁移现象已使感染扩散到了流行地区之外。由于目前市面上的两种药物硝呋莫司和苯硝唑的药理特性需要改进,开发新的药物疗法至关重要。克鲁斯蛋白酶是一种寄生性半胱氨酸蛋白酶,因其在寄生虫存活和免疫逃避中的作用,成为最具吸引力的生物学靶点之一。在这项工作中,我们整理并建立了一个文献中先前报道的多种克鲁斯蛋白酶抑制剂的数据库。利用k近邻和随机森林算法,从该数据集中生成了预测其pIC值的定量构效关系(QSAR)模型。计算并比较了局部和全局模型。内部和外部验证的统计参数表明具有显著的可预测性,内部R²值约为0.66和0.61,外部R²系数为0.725和0.766。根据QSAR的良好实践,使用杠杆率和相似性方法对适用域进行了定量定义。这项工作中描述的模型可在一个Python脚本中轻松获取,用于发现新型克鲁斯蛋白酶抑制剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfa2/7970485/2033c68175ba/ao0c05645_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验