Rodriguez Gini Ana Luísa, Souza Tada da Cunha Pamela, João Emílio Emílio, Man Chin Chung, Dos Santos Jean Leandro, Serra Esteban Carlos, Benito Scarim Cauê
Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil.
Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario S2000CGK, Argentina.
Pharmaceuticals (Basel). 2025 Jun 19;18(6):919. doi: 10.3390/ph18060919.
Chagas disease, caused by the protozoan parasite (), continues to pose significant public health challenges due to the toxicity, poor tolerability, and limited efficacy of current treatments. Targeted protein degradation (TPD) using proteolysis-targeting chimeras (PROTACs) represents a novel therapeutic avenue by leveraging the ubiquitin-proteasome system to selectively degrade essential parasite proteins. This review introduces the conceptual framework of "TrypPROTACs" as a prospective strategy for , integrating a comprehensive analysis of druggable targets across critical biological pathways, including ergosterol biosynthesis, redox metabolism, glycolysis, nucleotide synthesis, protein kinases, molecular chaperones such as heat shock protein 90 (Hsp90), and epigenetic regulators such as bromodomain factor 3 (TcBDF3). It is important to note that no TrypPROTAC compound has yet been synthesized or experimentally validated in ; the approach discussed herein remains theoretical and forward-looking. Representative inhibitors for each target class are compiled, highlighting potency, selectivity, and structural features relevant to ligand design. We also examine the parasite's ubiquitination machinery and compare it to the human system to identify putative E3 ubiquitin ligases. Key aspects of linker engineering and ternary complex stabilization are discussed, alongside potential validation techniques such as the cellular thermal shift assay (CETSA) and bioluminescence resonance energy transfer (NanoBRET). Collectively, these insights outline a roadmap for the rational design of TrypPROTACs and support the feasibility of expanding targeted protein degradation strategies to neglected tropical diseases.
恰加斯病由原生动物寄生虫()引起,由于当前治疗方法存在毒性、耐受性差和疗效有限等问题,仍然对公共卫生构成重大挑战。利用蛋白酶靶向嵌合体(PROTACs)进行靶向蛋白降解(TPD)代表了一种新的治疗途径,即利用泛素-蛋白酶体系统选择性降解重要的寄生虫蛋白。本综述介绍了“TrypPROTACs”作为治疗恰加斯病的一种前瞻性策略的概念框架,全面分析了关键生物学途径中的可成药靶点,包括麦角固醇生物合成、氧化还原代谢、糖酵解、核苷酸合成、蛋白激酶、分子伴侣如热休克蛋白90(Hsp90)以及表观遗传调节因子如溴结构域因子3(TcBDF3)。需要注意的是,尚未在恰加斯病中合成或通过实验验证任何TrypPROTAC化合物;本文讨论的方法仍属理论性和前瞻性的。汇编了每个靶点类别的代表性抑制剂,突出了与配体设计相关的效力、选择性和结构特征。我们还研究了寄生虫的泛素化机制,并将其与人类系统进行比较,以确定假定的E3泛素连接酶。讨论了连接子工程和三元复合物稳定化的关键方面,以及潜在的验证技术,如细胞热位移分析(CETSA)和生物发光共振能量转移(NanoBRET)。总体而言,这些见解勾勒了TrypPROTACs合理设计的路线图,并支持将靶向蛋白降解策略扩展到被忽视热带病的可行性。