van der Hoeven Jessi E S, Deng Tian-Song, Albrecht Wiebke, Olthof Liselotte A, van Huis Marijn A, de Jongh Petra E, van Blaaderen Alfons
Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands.
Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
ACS Omega. 2021 Mar 5;6(10):7034-7046. doi: 10.1021/acsomega.0c06321. eCollection 2021 Mar 16.
Bimetallic nanorods are important colloidal nanoparticles for optical applications, sensing, and light-enhanced catalysis due to their versatile plasmonic properties. However, tuning the plasmonic resonances is challenging as it requires a simultaneous control over the particle shape, shell thickness, and morphology. Here, we show that we have full control over these parameters by performing metal overgrowth on gold nanorods within a mesoporous silica shell, resulting in Au-Ag, Au-Pd, and Au-Pt core-shell nanorods with precisely tunable plasmonic properties. The metal shell thickness was regulated via the precursor concentration and reaction time in the metal overgrowth. Control over the shell morphology was achieved via a thermal annealing, enabling a transition from rough nonepitaxial to smooth epitaxial Pd shells while retaining the anisotropic rod shape. The core-shell synthesis was successfully scaled up from micro- to milligrams, by controlling the kinetics of the metal overgrowth via the pH. By carefully tuning the structure, we optimized the plasmonic properties of the bimetallic core-shell nanorods for surface-enhanced Raman spectroscopy. The Raman signal was the most strongly enhanced by the Au core-Ag shell nanorods, which we explain using finite-difference time-domain calculations.
双金属纳米棒由于其多样的等离子体性质,是用于光学应用、传感和光增强催化的重要胶体纳米颗粒。然而,调节等离子体共振具有挑战性,因为这需要同时控制颗粒形状、壳层厚度和形态。在此,我们表明,通过在介孔二氧化硅壳层内对金纳米棒进行金属过度生长,我们能够完全控制这些参数,从而得到具有精确可调等离子体性质的金 - 银、金 - 钯和金 - 铂核壳纳米棒。金属壳层厚度通过金属过度生长过程中的前驱体浓度和反应时间来调节。通过热退火实现对壳层形态的控制,在保留各向异性棒状形状的同时,实现从粗糙非外延到光滑外延钯壳层的转变。通过调节pH值控制金属过度生长的动力学,成功地将核壳合成从微克级扩大到毫克级。通过仔细调整结构,我们优化了双金属核壳纳米棒用于表面增强拉曼光谱的等离子体性质。金核 - 银壳纳米棒对拉曼信号的增强最为强烈,我们使用时域有限差分计算对此进行了解释。