Suppr超能文献

全髋关节置换术后短期翻修和死亡的术前风险预测模型:来自芬兰关节置换登记处的数据。

Preoperative Risk Prediction Models for Short-Term Revision and Death After Total Hip Arthroplasty: Data from the Finnish Arthroplasty Register.

作者信息

Venäläinen Mikko S, Panula Valtteri J, Klén Riku, Haapakoski Jaason J, Eskelinen Antti P, Manninen Mikko J, Kettunen Jukka S, Puhto Ari-Pekka, Vasara Anna I, Mäkelä Keijo T, Elo Laura L

机构信息

Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.

Department of Orthopaedics and Traumatology, Turku University Hospital and University of Turku, Turku, Finland.

出版信息

JB JS Open Access. 2021 Jan 25;6(1). doi: 10.2106/JBJS.OA.20.00091. eCollection 2021 Jan-Mar.

Abstract

UNLABELLED

Because of the increasing number of total hip arthroplasties (THAs), even a small proportion of complications after the operation can lead to substantial individual difficulties and health-care costs. The aim of this study was to develop simple-to-use risk prediction models to assess the risk of the most common reasons for implant failure to facilitate clinical decision-making and to ensure long-term survival of primary THAs.

METHODS

We analyzed patient and surgical data reported to the Finnish Arthroplasty Register (FAR) on 25,919 primary THAs performed in Finland between May 2014 and January 2018. For the most frequent adverse outcomes after primary THA, we developed multivariable Lasso regression models based on the data of the randomly selected training cohort (two-thirds of the data). The performances of all models were validated using the remaining, independent test set consisting of 8,640 primary THAs (one-third of the data) not used for building the models.

RESULTS

The most common outcomes within 6 months after the primary THA were revision operations due to periprosthetic joint infection (1.1%), dislocation (0.7%), or periprosthetic fracture (0.5%), and death (0.7%). For each of these outcomes, Lasso regression identified subsets of variables required for accurate risk predictions. The highest discrimination performance, in terms of area under the receiver operating characteristic curve (AUROC), was observed for death (0.84), whereas the performance was lower for revisions due to periprosthetic joint infection (0.68), dislocation (0.64), or periprosthetic fracture (0.65).

CONCLUSIONS

Based on the small number of preoperative characteristics of the patient and modifiable surgical parameters, the developed risk prediction models can be easily used to assess the risk of revision or death. All developed models hold the potential to aid clinical decision-making, ultimately leading to improved clinical outcomes.

LEVEL OF EVIDENCE

Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.

摘要

未标注

由于全髋关节置换术(THA)的数量不断增加,即使术后并发症的比例很小,也可能导致严重的个体困难和医疗保健成本。本研究的目的是开发易于使用的风险预测模型,以评估植入失败的最常见原因的风险,促进临床决策,并确保初次全髋关节置换术的长期存活。

方法

我们分析了2014年5月至2018年1月在芬兰进行的25919例初次全髋关节置换术的患者和手术数据,这些数据已报告给芬兰关节置换登记处(FAR)。对于初次全髋关节置换术后最常见的不良结局,我们基于随机选择的训练队列(数据的三分之二)的数据开发了多变量套索回归模型。所有模型的性能均使用由8640例未用于构建模型的初次全髋关节置换术(数据的三分之一)组成的剩余独立测试集进行验证。

结果

初次全髋关节置换术后6个月内最常见的结局是因假体周围关节感染(1.1%)、脱位(0.7 %)或假体周围骨折(0.5%)进行翻修手术,以及死亡(0.7%)。对于这些结局中的每一个,套索回归都确定了准确风险预测所需的变量子集。就受试者工作特征曲线下面积(AUROC)而言,死亡的判别性能最高(0.84),而因假体周围关节感染(0.68)、脱位(0.64)或假体周围骨折(0.65)进行翻修的性能较低。

结论

基于患者术前的少量特征和可改变的手术参数,所开发的风险预测模型可轻松用于评估翻修或死亡风险。所有开发的模型都有可能帮助临床决策,最终改善临床结局。

证据水平

预后III级。有关证据水平的完整描述,请参阅作者指南。

相似文献

引用本文的文献

本文引用的文献

10
Revision Surgery in Total Joint Replacement Is Cost-Intensive.关节置换术后翻修手术费用高昂。
Biomed Res Int. 2018 Sep 25;2018:8987104. doi: 10.1155/2018/8987104. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验