Sheehan Stafford W
Air Company, 407 Johnson Avenue, Brooklyn, NY 11206, USA.
iScience. 2021 Feb 24;24(3):102230. doi: 10.1016/j.isci.2021.102230. eCollection 2021 Mar 19.
Renewable CO electrosynthesis is a potentially promising tool to utilize unwanted greenhouse gas. The greatest barrier to its adoption is rendering the production of CO-derived chemicals cost-competitive, such that they have higher net value than their fossil-derived equivalents. Among the commodities that have been made using CO, HO, and electricity, CH is one of the simplest and most researched products. Technoeconomic studies of CO methanation make it clear that its high-value applications are limited without significant subsidy on Earth, where it competes with low-cost natural gas. In space, however, CO methanation via the Sabatier reaction is already used on the International Space Station to recycle atomic oxygen, and propulsion systems employing cryogenic liquid methane are in development for reusable rocket engines. Comparative analysis of power-to-gas using either CO electrosynthesis or the Sabatier reaction from an aerospace perspective identifies research priorities and parameters for deployment. Given its atmospheric CO concentration over 95%, Mars may present future opportunities for technology that could also help overcome our climate challenges on Earth.
可再生一氧化碳电合成是一种利用有害温室气体的潜在有前景的工具。采用该技术的最大障碍是使一氧化碳衍生化学品的生产成本具有竞争力,使其具有比化石衍生同类产品更高的净值。在利用一氧化碳、水和电力制造的商品中,甲烷是最简单且研究最多的产品之一。一氧化碳甲烷化的技术经济研究表明,在地球上,如果没有大量补贴,其高价值应用是有限的,因为它要与低成本的天然气竞争。然而,在太空中,通过萨巴蒂尔反应进行的一氧化碳甲烷化已在国际空间站上用于回收原子氧,并且正在为可重复使用的火箭发动机开发采用低温液态甲烷的推进系统。从航空航天角度对使用一氧化碳电合成或萨巴蒂尔反应的电转气进行比较分析,确定了部署的研究重点和参数。鉴于火星大气中一氧化碳浓度超过95%,火星可能为该技术带来未来机遇,这也有助于我们应对地球上的气候挑战。