Zhang Haochen, Chang Xiaoxia, Chen Jingguang G, Goddard William A, Xu Bingjun, Cheng Mu-Jeng, Lu Qi
State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China.
Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA.
Nat Commun. 2019 Jul 26;10(1):3340. doi: 10.1038/s41467-019-11292-9.
Electroreduction of carbon dioxide to hydrocarbons and oxygenates on copper involves reduction to a carbon monoxide adsorbate followed by further transformation to hydrocarbons and oxygenates. Simultaneous improvement of these processes over a single reactive site is challenging due to the linear scaling relationship of the binding strength of key intermediates. Herein, we report improved electroreduction of carbon dioxide by exploiting a one-pot tandem catalysis mechanism based on computational and electrochemical investigations. By constructing a well-defined copper-modified silver surface, adsorbed carbon monoxide generated on the silver sites is proposed to migrate to surface copper sites for the subsequent reduction to methane, which is consistent with insights gained from operando attenuated total reflectance surface enhanced infrared absorption spectroscopic investigations. Our results provide a promising approach for designing carbon dioxide electroreduction catalysts to enable one-pot reduction of products beyond carbon monoxide and formate.
二氧化碳在铜上电化学还原为碳氢化合物和含氧化合物涉及先还原为一氧化碳吸附物,随后进一步转化为碳氢化合物和含氧化合物。由于关键中间体结合强度的线性标度关系,在单一反应位点上同时改善这些过程具有挑战性。在此,我们基于计算和电化学研究,通过利用一锅串联催化机制报告了改进的二氧化碳电化学还原。通过构建明确的铜修饰银表面,提出在银位点上生成的吸附一氧化碳迁移到表面铜位点以随后还原为甲烷,这与从原位衰减全反射表面增强红外吸收光谱研究中获得的见解一致。我们的结果为设计二氧化碳电化学还原催化剂提供了一种有前景的方法,以实现除一氧化碳和甲酸盐之外的产物的一锅还原。