Suppr超能文献

小鼠心电图的对称投影吸引子重构分析:对由布加综合征引起的Scn5a基因突变的回顾性预测

Symmetric Projection Attractor Reconstruction analysis of murine electrocardiograms: Retrospective prediction of Scn5a genetic mutation attributable to Brugada syndrome.

作者信息

Bonet-Luz Esther, Lyle Jane V, Huang Christopher L-H, Zhang Yanmin, Nandi Manasi, Jeevaratnam Kamalan, Aston Philip J

机构信息

Department of Mathematics, University of Surrey, Guildford, United Kingdom.

Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.

出版信息

Heart Rhythm O2. 2020 Dec;1(5):368-375. doi: 10.1016/j.hroo.2020.08.007.

Abstract

BACKGROUND

Life-threatening arrhythmias resulting from genetic mutations are often missed in current electrocardiogram (ECG) analysis. We combined a new method for ECG analysis that uses all the waveform data with machine learning to improve detection of such mutations from short ECG signals in a mouse model.

OBJECTIVE

We sought to detect consequences of Na channel deficiencies known to compromise action potential conduction in comparisons of Scn5a mutant and wild-type mice using short ECG signals, examining novel and standard features derived from lead I and II ECG recordings by machine learning algorithms.

METHODS

Lead I and II ECG signals from anesthetized wild-type and Scn5a mutant mice of length 130 seconds were analyzed by extracting various groups of features, which were used by machine learning to classify the mice as wild-type or mutant. The features used were standard ECG intervals and amplitudes, as well as features derived from attractors generated using the novel Symmetric Projection Attractor Reconstruction method, which reformulates the whole signal as a bounded, symmetric 2-dimensional attractor. All the features were also combined as a single feature group.

RESULTS

Classification of genotype using the attractor features gave higher accuracy than using either the ECG intervals or the intervals and amplitudes. However, the highest accuracy (96%) was obtained using all the features. Accuracies for different subgroups of the data were obtained and compared.

CONCLUSION

Detection of the Scn5a mutation from short mouse ECG signals with high accuracy is possible using our Symmetric Projection Attractor Reconstruction method.

摘要

背景

在当前的心电图(ECG)分析中,由基因突变导致的危及生命的心律失常常常被漏诊。我们将一种利用所有波形数据的新型ECG分析方法与机器学习相结合,以提高在小鼠模型中从短ECG信号检测此类突变的能力。

目的

我们试图在使用短ECG信号比较Scn5a突变小鼠和野生型小鼠时,检测已知会损害动作电位传导的钠通道缺陷的后果,通过机器学习算法检查从I导联和II导联ECG记录中得出的新特征和标准特征。

方法

对来自麻醉的野生型和Scn5a突变小鼠的时长130秒的I导联和II导联ECG信号进行分析,提取各类特征组,这些特征被用于机器学习以将小鼠分类为野生型或突变型。所使用的特征包括标准ECG间期和振幅,以及源自使用新型对称投影吸引子重构方法生成的吸引子的特征,该方法将整个信号重新表述为有界的对称二维吸引子。所有特征也被组合成一个单一特征组。

结果

使用吸引子特征对基因型进行分类比使用ECG间期或间期与振幅具有更高的准确性。然而,使用所有特征获得了最高的准确性(96%)。获取并比较了数据不同亚组的准确性。

结论

使用我们的对称投影吸引子重构方法可以高精度地从小鼠短ECG信号中检测Scn5a突变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ece0/8183969/dbc7e417b069/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验