McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada.
Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada.
Magn Reson Med. 2021 Aug;86(2):738-753. doi: 10.1002/mrm.28734. Epub 2021 Mar 21.
Most voxels in white matter contain multiple fiber populations with different orientations and levels of myelination. Conventional T mapping measures 1 T value per voxel, representing a weighted average of the multiple tract T times. Inversion-recovery diffusion-weighted imaging (IR-DWI) allows the T times of multiple tracts in a voxel to be disentangled, but the scan time is prohibitively long. Recently, slice-shuffled IR-DWI implementations have been proposed to significantly reduce scan time. In this work, we demonstrate that we can measure tract-specific T values in the whole brain using simultaneous multi-slice slice-shuffled IR-DWI at 3T.
We perform simulations to evaluate the accuracy and precision of our crossing fiber IR-DWI signal model for various fiber parameters. The proposed sequence and signal model are tested in a phantom consisting of crossing asparagus pieces doped with gadolinium to vary T , and in 2 human subjects.
Our simulations show that tract-specific T times can be estimated within 5% of the nominal fiber T values. Tract-specific T values were resolved in subvoxel 2 fiber crossings in the asparagus phantom. Tract-specific T times were resolved in 2 different tract crossings in the human brain where myelination differences have previously been reported; the crossing of the cingulum and genu of the corpus callosum and the crossing of the corticospinal tract and pontine fibers.
Whole-brain tract-specific T mapping is feasible using slice-shuffled IR-DWI at 3T. This technique has the potential to improve the microstructural characterization of specific tracts implicated in neurodevelopment, aging, and demyelinating disorders.
白质中的大多数体素包含具有不同方向和髓鞘化程度的多个纤维群。传统的 T 映射测量每个体素的 1 T 值,代表多个束 T 值的加权平均值。反转恢复扩散加权成像(IR-DWI)允许在体素中分离多个束的 T 值,但扫描时间过长。最近,提出了切片混合反转恢复扩散加权成像(slice-shuffled IR-DWI)实现方法,可以显著减少扫描时间。在这项工作中,我们证明了我们可以使用 3T 时的同时多切片切片混合反转恢复扩散加权成像来测量整个大脑中的束特异性 T 值。
我们进行模拟,以评估各种纤维参数的我们的交叉纤维 IR-DWI 信号模型的准确性和精度。在所提出的序列和信号模型在由掺杂钆的交叉芦笋片组成的体模中进行测试,以改变 T ,并在 2 名人类受试者中进行测试。
我们的模拟表明,可以在 5%的标称纤维 T 值内估计束特异性 T 值。在芦笋体模中的亚体素 2 纤维交叉处可以分辨出束特异性 T 值。在人类大脑中已经报道了先前报道的髓鞘差异的 2 个不同束交叉处,分辨出了束特异性 T 值;胼胝体和穹窿的扣带束和皮质脊髓束和脑桥纤维的交叉处。
使用 3T 时的切片混合反转恢复扩散加权成像,可以实现整个大脑的束特异性 T 映射。这项技术有可能改善与神经发育、衰老和脱髓鞘疾病有关的特定束的微观结构特征。