Carter Francis, Anwander Alfred, Johnson Mathieu, Goucha Thomás, Adamson Helyne, Friederici Angela D, Lutti Antoine, Gauthier Claudine J, Weiskopf Nikolaus, Bazin Pierre-Louis, Steele Christopher J
Department of Psychology, Concordia University, Montreal, Québec, Canada.
Montreal Institute for Learning Algorithms, Université de Montréal, Montreal, Québec, Canada.
PLoS One. 2025 Jul 24;20(7):e0327828. doi: 10.1371/journal.pone.0327828. eCollection 2025.
The study of brain structure and change in neuroscience is commonly conducted using macroscopic morphological measures of the brain such as regional volume or cortical thickness, providing little insight into the microstructure and physiology of the brain. In contrast, quantitative Magnetic Resonance Imaging (MRI) allows the monitoring of microscopic brain change non-invasively in-vivo, and provides directly comparable values between tissues, regions, and individuals. To support the development and common use of qMRI for cognitive neuroscience, we analysed a set of qMRI and dMRI metrics (R1, R2*, Magnetization Transfer saturation, Proton Density saturation, Fractional Anisotropy, Mean Diffusivity) in 101 healthy young adults. Here we provide a comprehensive descriptive analysis of these metrics and their linear relationships to each other in grey and white matter to develop a more complete understanding of the relationship to tissue microstructure. Furthermore, we provide evidence that combinations of metrics may uncover informative gradients across the brain by showing that lower variance components of PCA may be used to identify cortical gradients otherwise hidden within individual metrics. We discuss these results within the context of microstructural and physiological neuroscience research.
神经科学中对大脑结构及其变化的研究通常采用大脑的宏观形态学测量方法,如区域体积或皮质厚度,这对大脑的微观结构和生理学了解甚少。相比之下,定量磁共振成像(MRI)能够在活体中对大脑微观变化进行无创监测,并能提供组织、区域和个体之间直接可比的值。为了支持定量MRI在认知神经科学中的发展和广泛应用,我们分析了101名健康年轻成年人的一组定量MRI和扩散张量成像(dMRI)指标(R1、R2*、磁化传递饱和度、质子密度饱和度、分数各向异性、平均扩散率)。在此,我们对这些指标及其在灰质和白质中的线性关系进行了全面的描述性分析,以更全面地理解它们与组织微观结构的关系。此外,我们通过表明主成分分析(PCA)的较低方差成分可用于识别隐藏在各个指标中的皮质梯度,从而证明指标组合可能揭示大脑中的信息梯度。我们在微观结构和生理神经科学研究的背景下讨论了这些结果。