Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, UK; Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland.
Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, UK.
Neuroimage. 2021 Feb 15;227:117617. doi: 10.1016/j.neuroimage.2020.117617. Epub 2020 Dec 7.
At the typical spatial resolution of MRI in the human brain, approximately 60-90% of voxels contain multiple fiber populations. Quantifying microstructural properties of distinct fiber populations within a voxel is therefore challenging but necessary. While progress has been made for diffusion and T-relaxation properties, how to resolve intra-voxel T heterogeneity remains an open question. Here a novel framework, named COMMIT-T, is proposed that uses tractography-based spatial regularization with diffusion-relaxometry data to estimate multiple intra-axonal T values within a voxel. Unlike previously-proposed voxel-based T estimation methods, which (when applied in white matter) implicitly assume just one fiber bundle in the voxel or the same T for all bundles in the voxel, COMMIT-T can recover specific T values for each unique fiber population passing through the voxel. In this approach, the number of recovered unique T values is not determined by a number of model parameters set a priori, but rather by the number of tractography-reconstructed streamlines passing through the voxel. Proof-of-concept is provided in silico and in vivo, including a demonstration that distinct tract-specific T profiles can be recovered even in the three-way crossing of the corpus callosum, arcuate fasciculus, and corticospinal tract. We demonstrate the favourable performance of COMMIT-T compared to that of voxelwise approaches for mapping intra-axonal T exploiting diffusion, including a direction-averaged method and AMICO-T, a new extension to the previously-proposed Accelerated Microstructure Imaging via Convex Optimization (AMICO) framework.
在人类大脑的典型 MRI 空间分辨率下,大约 60-90%的体素包含多个纤维群体。因此,量化体素内不同纤维群体的微观结构特性是具有挑战性但又必要的。虽然在扩散和 T 弛豫特性方面已经取得了进展,但如何解决体素内 T 异质性仍然是一个悬而未决的问题。在这里,我们提出了一种新的框架,名为 COMMIT-T,它使用基于轨迹的空间正则化和扩散弛豫数据来估计体素内的多个轴内 T 值。与之前提出的基于体素的 T 估计方法不同,后者(在白质中应用时)隐含地假设体素内只有一个纤维束或体素内所有束的相同 T,而 COMMIT-T 可以为穿过体素的每个独特纤维群体恢复特定的 T 值。在这种方法中,恢复的独特 T 值的数量不是由预先设定的模型参数数量决定的,而是由穿过体素的轨迹重建轨迹线的数量决定的。本文提供了在体和体内的概念验证,包括证明即使在胼胝体、弓状束和皮质脊髓束的三路交叉处,也可以恢复特定的束特异性 T 分布。我们展示了与基于体素的方法相比,COMMIT-T 在利用扩散映射轴内 T 方面的优越性能,包括一种方向平均方法和 AMICO-T,这是对之前提出的通过凸优化加速微观结构成像(AMICO)框架的新扩展。