Suppr超能文献

寻找 COVID-19 治疗药物:通过虚拟筛选、药效团建模和分子动力学鉴定潜在的 SARS-CoV-2 主蛋白酶抑制剂。

On the search for COVID-19 therapeutics: identification of potential SARS-CoV-2 main protease inhibitors by virtual screening, pharmacophore modeling and molecular dynamics.

机构信息

Drug Design and Discovery Lab, Zewail City of Science and Technology, Giza, Egypt.

Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.

出版信息

J Biomol Struct Dyn. 2022 Oct;40(17):7815-7828. doi: 10.1080/07391102.2021.1902399. Epub 2021 Mar 22.

Abstract

COVID-19 also known as SARS-CoV-2 outbreak in late 2019 and its worldwide pandemic spread has taken the world by surprise. The minute-to-minute increasing coronavirus cases (>85 M) and progressive deaths (≈1.8 M) calls for finding a cure to this devastating pandemic. While there have been many attempts to find biologically active molecules targeting SARS-CoV-2 for treatment of this viral infection, none has found a way to the clinic yet. In this study, a 3-feature structure-based pharmacophore model was designed for SARS-CoV-2 main protease (M) that plays a vital role in the viral cellular penetration. High throughput virtual screening of the lead-like ZINC library was then performed to find a potent inhibitor employing the predesigned pharmacophore. In-silico pharmacokinetics/toxicity prediction study was subsequently applied towards the best hits. Finally, a 50 ns molecular dynamics simulation was carried out for the best hit and compared to the co-crystallized ligand where the hit compound displayed high binding and comparable interactions. The results identified new hits for SARS-CoV-2 M inhibition showing good docking score, pharmacokinetics and toxicity profile, drug-likeness, high binding energy in addition to a promising synthetic accessibility. Identifying new small compounds as potential leads for inhibiting SARS-CoV-2 is a very important step towards designing a synthesizing of promising drug candidates.Communicated by Ramaswamy H. Sarma.

摘要

2019 年末爆发的 COVID-19(又称 SARS-CoV-2)及其在全球范围内的大流行令世界措手不及。每分钟都在增加的冠状病毒病例(>8500 万)和不断增加的死亡人数(≈180 万),这都要求我们找到一种方法来治愈这种毁灭性的大流行。虽然已经有许多尝试寻找针对 SARS-CoV-2 的生物活性分子来治疗这种病毒感染,但没有一种方法能够进入临床。在这项研究中,设计了一种基于 3 个特征的 SARS-CoV-2 主要蛋白酶(M)结构的药效团模型,该蛋白酶在病毒细胞穿透中起着至关重要的作用。然后,对类似先导的 ZINC 文库进行高通量虚拟筛选,以利用预设计的药效团寻找有效的抑制剂。随后对最佳命中物进行了计算机药物代谢动力学/毒性预测研究。最后,对最佳命中物进行了 50ns 的分子动力学模拟,并与共结晶配体进行了比较,结果表明命中化合物具有高结合能和可比拟的相互作用。这些结果确定了新的 SARS-CoV-2 M 抑制剂,这些抑制剂具有良好的对接评分、药物代谢动力学和毒性特征、类药性、高结合能以及有前途的合成可及性。确定新的小分子作为抑制 SARS-CoV-2 的潜在先导化合物是设计有前途的药物候选物的重要步骤。通讯作者为 Ramaswamy H. Sarma。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验