Drug Design and Discovery Lab, Zewail City of Science and Technology, Giza, Egypt.
Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.
J Biomol Struct Dyn. 2022 Oct;40(17):7815-7828. doi: 10.1080/07391102.2021.1902399. Epub 2021 Mar 22.
COVID-19 also known as SARS-CoV-2 outbreak in late 2019 and its worldwide pandemic spread has taken the world by surprise. The minute-to-minute increasing coronavirus cases (>85 M) and progressive deaths (≈1.8 M) calls for finding a cure to this devastating pandemic. While there have been many attempts to find biologically active molecules targeting SARS-CoV-2 for treatment of this viral infection, none has found a way to the clinic yet. In this study, a 3-feature structure-based pharmacophore model was designed for SARS-CoV-2 main protease (M) that plays a vital role in the viral cellular penetration. High throughput virtual screening of the lead-like ZINC library was then performed to find a potent inhibitor employing the predesigned pharmacophore. In-silico pharmacokinetics/toxicity prediction study was subsequently applied towards the best hits. Finally, a 50 ns molecular dynamics simulation was carried out for the best hit and compared to the co-crystallized ligand where the hit compound displayed high binding and comparable interactions. The results identified new hits for SARS-CoV-2 M inhibition showing good docking score, pharmacokinetics and toxicity profile, drug-likeness, high binding energy in addition to a promising synthetic accessibility. Identifying new small compounds as potential leads for inhibiting SARS-CoV-2 is a very important step towards designing a synthesizing of promising drug candidates.Communicated by Ramaswamy H. Sarma.
2019 年末爆发的 COVID-19(又称 SARS-CoV-2)及其在全球范围内的大流行令世界措手不及。每分钟都在增加的冠状病毒病例(>8500 万)和不断增加的死亡人数(≈180 万),这都要求我们找到一种方法来治愈这种毁灭性的大流行。虽然已经有许多尝试寻找针对 SARS-CoV-2 的生物活性分子来治疗这种病毒感染,但没有一种方法能够进入临床。在这项研究中,设计了一种基于 3 个特征的 SARS-CoV-2 主要蛋白酶(M)结构的药效团模型,该蛋白酶在病毒细胞穿透中起着至关重要的作用。然后,对类似先导的 ZINC 文库进行高通量虚拟筛选,以利用预设计的药效团寻找有效的抑制剂。随后对最佳命中物进行了计算机药物代谢动力学/毒性预测研究。最后,对最佳命中物进行了 50ns 的分子动力学模拟,并与共结晶配体进行了比较,结果表明命中化合物具有高结合能和可比拟的相互作用。这些结果确定了新的 SARS-CoV-2 M 抑制剂,这些抑制剂具有良好的对接评分、药物代谢动力学和毒性特征、类药性、高结合能以及有前途的合成可及性。确定新的小分子作为抑制 SARS-CoV-2 的潜在先导化合物是设计有前途的药物候选物的重要步骤。通讯作者为 Ramaswamy H. Sarma。