Suppr超能文献

基于卷积神经网络的迁移学习在多视图超声中进行肝脏脂肪评估。

Liver Fat Assessment in Multiview Sonography Using Transfer Learning With Convolutional Neural Networks.

机构信息

Department of Radiology, University of California, La Jolla, California, USA.

Department of Ultrasound, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland.

出版信息

J Ultrasound Med. 2022 Jan;41(1):175-184. doi: 10.1002/jum.15693. Epub 2021 Mar 10.

Abstract

OBJECTIVES

To develop and evaluate deep learning models devised for liver fat assessment based on ultrasound (US) images acquired from four different liver views: transverse plane (hepatic veins at the confluence with the inferior vena cava, right portal vein, right posterior portal vein) and sagittal plane (liver/kidney).

METHODS

US images (four separate views) were acquired from 135 participants with known or suspected nonalcoholic fatty liver disease. Proton density fat fraction (PDFF) values derived from chemical shift-encoded magnetic resonance imaging served as ground truth. Transfer learning with a deep convolutional neural network (CNN) was applied to develop models for diagnosis of fatty liver (PDFF ≥ 5%), diagnosis of advanced steatosis (PDFF ≥ 10%), and PDFF quantification for each liver view separately. In addition, an ensemble model based on all four liver view models was investigated. Diagnostic performance was assessed using the area under the receiver operating characteristics curve (AUC), and quantification was assessed using the Spearman correlation coefficient (SCC).

RESULTS

The most accurate single view was the right posterior portal vein, with an SCC of 0.78 for quantifying PDFF and AUC values of 0.90 (PDFF ≥ 5%) and 0.79 (PDFF ≥ 10%). The ensemble of models achieved an SCC of 0.81 and AUCs of 0.91 (PDFF ≥ 5%) and 0.86 (PDFF ≥ 10%).

CONCLUSION

Deep learning-based analysis of US images from different liver views can help assess liver fat.

摘要

目的

开发并评估基于来自四个不同肝脏切面的超声(US)图像的肝脏脂肪评估深度学习模型,这四个切面分别是:横切面(肝静脉与下腔静脉汇合处、右门静脉、右后门静脉)和矢状面(肝脏/肾脏)。

方法

从 135 名已知或疑似非酒精性脂肪肝疾病的参与者中获取 US 图像(四个单独的切面)。化学位移编码磁共振成像得出的质子密度脂肪分数(PDFF)值作为金标准。应用迁移学习的深度卷积神经网络(CNN)来开发用于诊断脂肪肝(PDFF≥5%)、诊断严重脂肪变性(PDFF≥10%)和单独对每个肝脏切面进行 PDFF 定量的模型。此外,还研究了基于所有四个肝脏切面模型的集成模型。使用接收器操作特征曲线下的面积(AUC)评估诊断性能,使用斯皮尔曼相关系数(SCC)评估定量性能。

结果

最准确的单一切面是右后门静脉,其用于定量 PDFF 的 SCC 为 0.78,AUC 值分别为 0.90(PDFF≥5%)和 0.79(PDFF≥10%)。模型的集成达到了 0.81 的 SCC 和 0.91(PDFF≥5%)和 0.86(PDFF≥10%)的 AUC。

结论

基于深度学习的不同肝脏切面 US 图像分析可帮助评估肝脏脂肪。

相似文献

引用本文的文献

5
Artificial intelligence in imaging for liver disease diagnosis.用于肝病诊断的成像中的人工智能。
Front Med (Lausanne). 2025 Apr 25;12:1591523. doi: 10.3389/fmed.2025.1591523. eCollection 2025.
6
Machine-to-Machine Transfer Function in Deep Learning-Based Quantitative Ultrasound.基于深度学习的定量超声中的机器对机器传递函数
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Jun;71(6):687-697. doi: 10.1109/TUFFC.2024.3384815.
10
Automated fatty liver disease detection in point-of-care ultrasound B-mode images.即时超声B模式图像中脂肪肝疾病的自动检测
J Med Imaging (Bellingham). 2023 May;10(3):034505. doi: 10.1117/1.JMI.10.3.034505. Epub 2023 Jun 5.

本文引用的文献

3
Prediction of fatty liver disease using machine learning algorithms.使用机器学习算法预测脂肪肝疾病。
Comput Methods Programs Biomed. 2019 Mar;170:23-29. doi: 10.1016/j.cmpb.2018.12.032. Epub 2018 Dec 29.
6
Interpreting Deep Visual Representations via Network Dissection.通过网络剖析来解释深度视觉表示。
IEEE Trans Pattern Anal Mach Intell. 2019 Sep;41(9):2131-2145. doi: 10.1109/TPAMI.2018.2858759. Epub 2018 Jul 23.
9
10
A survey on deep learning in medical image analysis.深度学习在医学图像分析中的应用研究综述。
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验