Suppr超能文献

使用机器学习进行因果研究的十三个问题(你不会相信问题 10 的答案!)!

Thirteen Questions About Using Machine Learning in Causal Research (You Won't Believe the Answer to Number 10!).

出版信息

Am J Epidemiol. 2021 Aug 1;190(8):1476-1482. doi: 10.1093/aje/kwab047.

Abstract

Machine learning is gaining prominence in the health sciences, where much of its use has focused on data-driven prediction. However, machine learning can also be embedded within causal analyses, potentially reducing biases arising from model misspecification. Using a question-and-answer format, we provide an introduction and orientation for epidemiologists interested in using machine learning but concerned about potential bias or loss of rigor due to use of "black box" models. We conclude with sample software code that may lower the barrier to entry to using these techniques.

摘要

机器学习在健康科学领域越来越受到关注,其应用主要集中在数据驱动的预测上。然而,机器学习也可以嵌入到因果分析中,从而减少由于模型不精确而产生的偏差。我们采用问答的形式,为对使用机器学习感兴趣但又担心由于使用“黑盒”模型而导致潜在偏差或严谨性损失的流行病学家提供介绍和指导。最后,我们提供了一些示例软件代码,这些代码可能会降低使用这些技术的门槛。

相似文献

引用本文的文献

3
Computational Approaches for Connecting Maternal Stress to Preterm Birth.计算方法将母体应激与早产联系起来。
Clin Perinatol. 2024 Jun;51(2):345-360. doi: 10.1016/j.clp.2024.02.003. Epub 2024 Mar 15.
5
Artificial intelligence for dementia prevention.人工智能在预防痴呆中的应用。
Alzheimers Dement. 2023 Dec;19(12):5952-5969. doi: 10.1002/alz.13463. Epub 2023 Oct 14.

本文引用的文献

6
HIGHER ORDER ESTIMATING EQUATIONS FOR HIGH-DIMENSIONAL MODELS.高维模型的高阶估计方程
Ann Stat. 2017 Oct;45(5):1951-1987. doi: 10.1214/16-AOS1515. Epub 2017 Oct 31.
9
Stacked generalization: an introduction to super learning.堆叠泛化:超级学习导论。
Eur J Epidemiol. 2018 May;33(5):459-464. doi: 10.1007/s10654-018-0390-z. Epub 2018 Apr 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验