Suppr超能文献

具有空间注意机制的轻量级金字塔网络,用于精确的视网膜血管分割。

Lightweight pyramid network with spatial attention mechanism for accurate retinal vessel segmentation.

机构信息

University of Science and Technology of China, No.96, JinZhai Road Baohe District, Hefei, 230026, Anhui, People's Republic of China.

School of Electrical Engineering and Automation, Hefei University of Technology, Hefei, 230009, Anhui, People's Republic of China.

出版信息

Int J Comput Assist Radiol Surg. 2021 Apr;16(4):673-682. doi: 10.1007/s11548-021-02344-x. Epub 2021 Mar 22.

Abstract

PURPOSE

The morphological characteristics of retinal vessels are vital for the early diagnosis of pathological diseases such as diabetes and hypertension. However, the low contrast and complex morphology pose a challenge to automatic retinal vessel segmentation. To extract precise semantic features, more convolution and pooling operations are adopted, but some structural information is potentially ignored.

METHODS

In the paper, we propose a novel lightweight pyramid network (LPN) fusing multi-scale features with spatial attention mechanism to preserve the structure information of retinal vessels. The pyramid hierarchy model is constructed to generate multi-scale representations, and its semantic features are strengthened with the introduction of the attention mechanism. The combination of multi-scale features contributes to its accurate prediction.

RESULTS

The LPN is evaluated on benchmark datasets DRIVE, STARE and CHASE, and the results indicate its state-of-the-art performance (e.g., ACC of 97.09[Formula: see text]/97.49[Formula: see text]/97.48[Formula: see text], AUC of 98.79[Formula: see text]/99.01[Formula: see text]/98.91[Formula: see text] on the DRIVE, STARE and CHASE datasets, respectively). The robustness and generalization ability of the LPN are further proved in cross-training experiment.

CONCLUSION

The visualization experiment reveals the semantic gap between various scales of the pyramid and verifies the effectiveness of the attention mechanism, which provide a potential basis for the pyramid hierarchy model in multi-scale vessel segmentation task. Furthermore, the number of model parameters is greatly reduced.

摘要

目的

视网膜血管的形态特征对于糖尿病和高血压等病理疾病的早期诊断至关重要。然而,低对比度和复杂的形态给自动视网膜血管分割带来了挑战。为了提取精确的语义特征,采用了更多的卷积和池化操作,但可能会忽略一些结构信息。

方法

在本文中,我们提出了一种新颖的轻量级金字塔网络(LPN),该网络融合了多尺度特征和空间注意力机制,以保留视网膜血管的结构信息。构建了金字塔层次模型以生成多尺度表示,并通过引入注意力机制来增强其语义特征。多尺度特征的组合有助于其进行准确预测。

结果

LPN 在基准数据集 DRIVE、STARE 和 CHASE 上进行了评估,结果表明其具有最先进的性能(例如,在 DRIVE、STARE 和 CHASE 数据集上的 ACC 分别为 97.09%/97.49%/97.48%,AUC 分别为 98.79%/99.01%/98.91%)。LPN 的稳健性和泛化能力在交叉训练实验中得到了进一步证明。

结论

可视化实验揭示了金字塔各尺度之间的语义差距,并验证了注意力机制的有效性,为金字塔层次模型在多尺度血管分割任务中提供了潜在的基础。此外,模型参数的数量大大减少。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验