Suppr超能文献

MFI-Net:用于视网膜血管分割的多尺度特征交互网络。

MFI-Net: Multiscale Feature Interaction Network for Retinal Vessel Segmentation.

出版信息

IEEE J Biomed Health Inform. 2022 Sep;26(9):4551-4562. doi: 10.1109/JBHI.2022.3182471. Epub 2022 Sep 9.

Abstract

Segmentation of retinal vessels on fundus images plays a critical role in the diagnosis of micro-vascular and ophthalmological diseases. Although being extensively studied, this task remains challenging due to many factors including the highly variable vessel width and poor vessel-background contrast. In this paper, we propose a multiscale feature interaction network (MFI-Net) for retinal vessel segmentation, which is a U-shaped convolutional neural network equipped with the pyramid squeeze-and-excitation (PSE) module, coarse-to-fine (C2F) module, deep supervision, and feature fusion. We extend the SE operator to multiscale features, resulting in the PSE module, which uses the channel attention learned at multiple scales to enhance multiscale features and enables the network to handle the vessels with variable width. We further design the C2F module to generate and re-process the residual feature maps, aiming to preserve more vessel details during the decoding process. The proposed MFI-Net has been evaluated against several public models on the DRIVE, STARE, CHASE_DB1, and HRF datasets. Our results suggest that both PSE and C2F modules are effective in improving the accuracy of MFI-Net, and also indicate that our model has superior segmentation performance and generalization ability over existing models on four public datasets.

摘要

眼底图像的血管分割在微血管和眼科疾病的诊断中起着至关重要的作用。尽管已经进行了广泛的研究,但由于血管宽度变化大、血管与背景对比度差等多种因素的影响,这一任务仍然具有挑战性。在本文中,我们提出了一种用于视网膜血管分割的多尺度特征交互网络(MFI-Net),它是一个 U 形卷积神经网络,配备了金字塔挤压激励(PSE)模块、粗到精(C2F)模块、深度监督和特征融合。我们将 SE 算子扩展到多尺度特征,得到 PSE 模块,它利用在多个尺度上学习到的通道注意力来增强多尺度特征,使网络能够处理宽度变化的血管。我们进一步设计了 C2F 模块来生成和重新处理残差特征图,旨在在解码过程中保留更多的血管细节。我们的 MFI-Net 在 DRIVE、STARE、CHASE_DB1 和 HRF 数据集上与几个公共模型进行了评估。我们的结果表明,PSE 和 C2F 模块都能有效地提高 MFI-Net 的准确性,并且还表明,我们的模型在四个公共数据集上具有优于现有模型的分割性能和泛化能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验