Suppr超能文献

骨力学调节允许基于时间推移微型计算机断层扫描和高分辨率外周定量计算机断层扫描进行个体特异性负荷估计。

Bone Mechanoregulation Allows Subject-Specific Load Estimation Based on Time-Lapsed Micro-CT and HR-pQCT .

作者信息

Walle Matthias, Marques Francisco C, Ohs Nicholas, Blauth Michael, Müller Ralph, Collins Caitlyn J

机构信息

Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.

Department for Trauma Surgery, Innsbruck University Hospital, Innsbruck, Austria.

出版信息

Front Bioeng Biotechnol. 2021 Jun 25;9:677985. doi: 10.3389/fbioe.2021.677985. eCollection 2021.

Abstract

Patients at high risk of fracture due to metabolic diseases frequently undergo long-term antiresorptive therapy. However, in some patients, treatment is unsuccessful in preventing fractures or causes severe adverse health outcomes. Understanding load-driven bone remodelling, i.e., mechanoregulation, is critical to understand which patients are at risk for progressive bone degeneration and may enable better patient selection or adaptive therapeutic intervention strategies. Bone microarchitecture assessment using high-resolution peripheral quantitative computed tomography (HR-pQCT) combined with computed mechanical loads has successfully been used to investigate bone mechanoregulation at the trabecular level. To obtain the required mechanical loads that induce local variances in mechanical strain and cause bone remodelling, estimation of physiological loading is essential. Current models homogenise strain patterns throughout the bone to estimate load distribution , assuming that the bone structure is in biomechanical homoeostasis. Yet, this assumption may be flawed for investigating alterations in bone mechanoregulation. By further utilising available spatiotemporal information of time-lapsed bone imaging studies, we developed a mechanoregulation-based load estimation (MR) algorithm. MR calculates organ-scale loads by scaling and superimposing a set of predefined independent unit loads to optimise measured bone formation in high-, quiescence in medium-, and resorption in low-strain regions. We benchmarked our algorithm against a previously published load history (LH) algorithm using synthetic data, micro-CT images of murine vertebrae under defined experimental loadings, and HR-pQCT images from seven patients. Our algorithm consistently outperformed LH in all three datasets. -generated time evolutions of distal radius geometries ( = 5) indicated significantly higher sensitivity, specificity, and accuracy for MR than LH ( < 0.01). This increased performance led to substantially better discrimination between physiological and extra-physiological loading in mice ( = 8). Moreover, a significantly ( < 0.01) higher association between remodelling events and computed local mechanical signals was found using MR [correct classification rate (CCR) = 0.42] than LH (CCR = 0.38) to estimate human distal radius loading. Future applications of MR may enable clinicians to link subtle changes in bone strength to changes in day-to-day loading, identifying weak spots in the bone microstructure for local intervention and personalised treatment approaches.

摘要

由于代谢性疾病而具有高骨折风险的患者经常接受长期抗吸收治疗。然而,在一些患者中,治疗在预防骨折方面并不成功,或者会导致严重的不良健康后果。了解负荷驱动的骨重塑,即机械调节,对于理解哪些患者有进行性骨退化的风险至关重要,并且可能有助于更好地选择患者或采用适应性治疗干预策略。使用高分辨率外周定量计算机断层扫描(HR-pQCT)结合计算机机械负荷进行骨微结构评估已成功用于研究小梁水平的骨机械调节。为了获得诱导机械应变局部变化并导致骨重塑所需的机械负荷,生理负荷的估计至关重要。当前模型使整个骨骼的应变模式均匀化以估计负荷分布,假设骨骼结构处于生物力学稳态。然而,这个假设在研究骨机械调节的改变时可能存在缺陷。通过进一步利用时间推移骨成像研究中可用的时空信息,我们开发了一种基于机械调节的负荷估计(MR)算法。MR通过缩放和叠加一组预定义的独立单位负荷来计算器官尺度的负荷,以优化高应变区域的测量骨形成、中等应变区域的静止状态和低应变区域的吸收。我们使用合成数据、在定义的实验负荷下的小鼠椎骨微CT图像以及七名患者的HR-pQCT图像,将我们的算法与先前发表的负荷历史(LH)算法进行了基准测试。在所有三个数据集中,我们的算法始终优于LH。生成的桡骨远端几何形状的时间演变(=5)表明,MR的敏感性、特异性和准确性显著高于LH(<0.01)。这种性能的提高导致在小鼠中生理负荷和超生理负荷之间的区分明显更好(=8)。此外,使用MR[正确分类率(CCR)=0.42]估计人类桡骨远端负荷时,发现重塑事件与计算的局部机械信号之间的关联显著高于LH(CCR = 0.38)(<0.01)。MR的未来应用可能使临床医生能够将骨强度的细微变化与日常负荷的变化联系起来,识别骨微结构中的薄弱点以进行局部干预和个性化治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b46/8267803/38dd7b770c2a/fbioe-09-677985-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验