Peach Robert, Friedrich Maximilian, Fronemann Lara, Muthuraman Muthuraman, Schreglmann Sebastian R, Zeller Daniel, Schrader Christoph, Krauss Joachim K, Schnitzler Alfons, Wittstock Matthias, Helmers Ann-Kristin, Paschen Steffen, Kühn Andrea, Skogseid Inger Marie, Eisner Wilhelm, Mueller Joerg, Matthies Cordula, Reich Martin, Volkmann Jens, Ip Chi Wang
Department of Neurology, University Hospital Würzburg, Würzburg, 97080, Germany.
Department of Brain Sciences, Imperial College London, London, UK.
NPJ Digit Med. 2024 Jun 18;7(1):160. doi: 10.1038/s41746-024-01140-6.
Dystonia is a neurological movement disorder characterised by abnormal involuntary movements and postures, particularly affecting the head and neck. However, current clinical assessment methods for dystonia rely on simplified rating scales which lack the ability to capture the intricate spatiotemporal features of dystonic phenomena, hindering clinical management and limiting understanding of the underlying neurobiology. To address this, we developed a visual perceptive deep learning framework that utilizes standard clinical videos to comprehensively evaluate and quantify disease states and the impact of therapeutic interventions, specifically deep brain stimulation. This framework overcomes the limitations of traditional rating scales and offers an efficient and accurate method that is rater-independent for evaluating and monitoring dystonia patients. To evaluate the framework, we leveraged semi-standardized clinical video data collected in three retrospective, longitudinal cohort studies across seven academic centres. We extracted static head angle excursions for clinical validation and derived kinematic variables reflecting naturalistic head dynamics to predict dystonia severity, subtype, and neuromodulation effects. The framework was also applied to a fully independent cohort of generalised dystonia patients for comparison between dystonia sub-types. Computer vision-derived measurements of head angle excursions showed a strong correlation with clinically assigned scores. Across comparisons, we identified consistent kinematic features from full video assessments encoding information critical to disease severity, subtype, and effects of neural circuit interventions, independent of static head angle deviations used in scoring. Our visual perceptive machine learning framework reveals kinematic pathosignatures of dystonia, potentially augmenting clinical management, facilitating scientific translation, and informing personalized precision neurology approaches.
肌张力障碍是一种神经运动障碍,其特征为异常的不自主运动和姿势,尤其影响头部和颈部。然而,目前用于肌张力障碍的临床评估方法依赖于简化的评分量表,这些量表无法捕捉肌张力障碍现象复杂的时空特征,阻碍了临床管理,并限制了对潜在神经生物学的理解。为了解决这一问题,我们开发了一种视觉感知深度学习框架,该框架利用标准临床视频全面评估和量化疾病状态以及治疗干预的影响,特别是深部脑刺激。该框架克服了传统评分量表的局限性,提供了一种高效、准确且独立于评分者的方法来评估和监测肌张力障碍患者。为了评估该框架,我们利用了在七个学术中心进行的三项回顾性纵向队列研究中收集的半标准化临床视频数据。我们提取了静态头部角度偏移用于临床验证,并导出反映自然头部动态的运动学变量以预测肌张力障碍的严重程度、亚型和神经调节效果。该框架还应用于一个完全独立的全身性肌张力障碍患者队列,以比较不同肌张力障碍亚型。计算机视觉得出的头部角度偏移测量结果与临床指定评分显示出强烈相关性。在各项比较中,我们从完整视频评估中识别出一致的运动学特征,这些特征编码了对疾病严重程度、亚型和神经回路干预效果至关重要的信息,与评分中使用的静态头部角度偏差无关。我们的视觉感知机器学习框架揭示了肌张力障碍的运动病理学特征,可能会增强临床管理、促进科学转化并为个性化精准神经病学方法提供信息。