Suppr超能文献

利用光合转基因蓝细菌促进皮肤再生支架中的淋巴管生成。

Use of photosynthetic transgenic cyanobacteria to promote lymphangiogenesis in scaffolds for dermal regeneration.

机构信息

Molecular Plant Science, Department Biology I, LMU Munich, Munich, Germany.

Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, Munich, Germany.

出版信息

Acta Biomater. 2021 May;126:132-143. doi: 10.1016/j.actbio.2021.03.033. Epub 2021 Mar 20.

Abstract

Impaired wound healing represents an unsolved medical need with a high impact on patients´ quality of life and global health care. Even though its causes are diverse, ischemic-hypoxic conditions and exacerbated inflammation are shared pathological features responsible for obstructing tissue restoration. In line with this, it has been suggested that promoting a normoxic pro-regenerative environment and accelerating inflammation resolution, by reinstating the lymphatic fluid transport, could allow the wound healing process to be resumed. Our group was first to demonstrate the functional use of scaffolds seeded with photosynthetic microorganisms to supply tissues with oxygen. Moreover, we previously proposed a photosynthetic gene therapy strategy to create scaffolds that deliver other therapeutic molecules, such as recombinant human growth factors into the wound area. In the present work, we introduce the use of transgenic Synechococcus sp. PCC 7002 cyanobacteria (SynHA), which can produce oxygen and lymphangiogenic hyaluronic acid, in photosynthetic biomaterials. We show that the co-culture of lymphatic endothelial cells with SynHA promotes their survival and proliferation under hypoxic conditions. Also, hyaluronic acid secreted by the cyanobacteria enhanced their lymphangiogenic potential as shown by changes to their gene expression profile, the presence of lymphangiogenic protein markers and their capacity to build lymph vessel tubes. Finally, by seeding SynHA into collagen-based dermal regeneration materials, we developed a viable photosynthetic scaffold that promotes lymphangiogenesis in vitro under hypoxic conditions. The results obtained in this study lay the groundwork for future tissue engineering applications using transgenic cyanobacteria that could become a therapeutic alternative for chronic wound treatment. STATEMENT OF SIGNIFICANCE: In this study, we introduce the use of transgenic Synechococcus sp. PCC 7002 (SynHA) cyanobacteria, which were genetically engineered to produce hyaluronic acid, to create lymphangiogenic photosynthetic scaffolds for dermal regeneration. Our results confirmed that SynHA cyanobacteria maintain their photosynthetic capacity under standard human cell culture conditions and efficiently proliferate when seeded inside fibrin-collagen scaffolds. Moreover, we show that SynHA supported the viability of co-cultured lymphatic endothelial cells (LECs) under hypoxic conditions by providing them with photosynthetic-derived oxygen, while cyanobacteria-derived hyaluronic acid stimulated the lymphangiogenic capacity of LECs. Since tissue hypoxia and impaired lymphatic drainage are two key factors that directly affect wound healing, our results suggest that lymphangiogenic photosynthetic biomaterials could become a treatment option for chronic wound management.

摘要

伤口愈合受损是一个尚未解决的医学需求,对患者的生活质量和全球医疗保健都有重大影响。尽管其病因多种多样,但缺血缺氧条件和炎症加剧是导致组织修复受阻的共同病理特征。因此,有人提出,通过恢复淋巴液运输来促进正常的促再生环境和加速炎症消退,可以使伤口愈合过程得以恢复。我们的研究小组率先证明了利用种植有光合作用微生物的支架为组织提供氧气的功能。此外,我们之前还提出了一种光合作用基因治疗策略,以创建可以将其他治疗性分子(如重组人生长因子)递送到伤口区域的支架。在本研究中,我们介绍了使用能够产生氧气和淋巴管生成透明质酸的转基因集胞藻 sp. PCC 7002 蓝藻(SynHA)在光合作用生物材料中的应用。我们发现,在缺氧条件下,淋巴管内皮细胞与 SynHA 的共培养促进了它们的存活和增殖。此外,蓝藻分泌的透明质酸增强了它们的淋巴管生成潜力,这表现在它们的基因表达谱的变化、淋巴管生成蛋白标志物的存在以及它们构建淋巴管管腔的能力。最后,我们将 SynHA 接种到基于胶原蛋白的真皮再生材料中,开发了一种在缺氧条件下具有促淋巴管生成能力的可行的光合作用支架。本研究为使用转基因蓝藻进行组织工程应用奠定了基础,这可能成为慢性伤口治疗的一种治疗选择。

意义声明

在这项研究中,我们引入了使用转基因集胞藻 sp. PCC 7002(SynHA)蓝藻来创建用于真皮再生的淋巴管生成光合作用支架。我们的结果证实,SynHA 蓝藻在标准的人类细胞培养条件下保持其光合作用能力,并在接种到纤维蛋白-胶原蛋白支架内时有效地增殖。此外,我们表明,SynHA 为共培养的淋巴管内皮细胞(LEC)在缺氧条件下提供光合作用衍生的氧气,同时蓝藻衍生的透明质酸刺激 LEC 的淋巴管生成能力,从而支持 LEC 的存活。由于组织缺氧和淋巴管引流受损是直接影响伤口愈合的两个关键因素,我们的结果表明,淋巴管生成光合作用生物材料可能成为慢性伤口管理的一种治疗选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验