Department of Cell Biology, University of Connecticut Health, Farmington, CT 06030.
Department of Cell Biology, University of Connecticut Health, Farmington, CT 06030;
Proc Natl Acad Sci U S A. 2021 Mar 30;118(13). doi: 10.1073/pnas.2006786118.
Stem cells divide asymmetrically to generate a stem cell and a differentiating daughter cell. Yet, it remains poorly understood how a stem cell and a differentiating daughter cell can receive distinct levels of niche signal and thus acquire different cell fates (self-renewal versus differentiation), despite being adjacent to each other and thus seemingly exposed to similar levels of niche signaling. In the ovary, germline stem cells (GSCs) are maintained by short range bone morphogenetic protein (BMP) signaling; the BMP ligands activate a receptor that phosphorylates the downstream molecule mothers against decapentaplegic (Mad). Phosphorylated Mad (pMad) accumulates in the GSC nucleus and activates the stem cell transcription program. Here, we demonstrate that pMad is highly concentrated in the nucleus of the GSC, while it quickly decreases in the nucleus of the differentiating daughter cell, the precystoblast (preCB), before the completion of cytokinesis. We show that a known Mad phosphatase, Dullard (Dd), is required for the asymmetric partitioning of pMad. Our mathematical modeling recapitulates the high sensitivity of the ratio of pMad levels to the Mad phosphatase activity and explains how the asymmetry arises in a shared cytoplasm. Together, these studies reveal a mechanism for breaking the symmetry of daughter cells during asymmetric stem cell division.
干细胞通过不对称分裂产生一个干细胞和一个分化的子细胞。然而,尽管干细胞和分化的子细胞彼此相邻,似乎暴露在相似水平的龛信号中,但它们如何能够接收不同水平的龛信号,从而获得不同的细胞命运(自我更新与分化),仍然知之甚少。在卵巢中,生殖干细胞(GSCs)通过短程骨形态发生蛋白(BMP)信号维持;BMP 配体激活受体,使下游分子母抗 decapentaplegic(Mad)磷酸化。磷酸化的 Mad(pMad)在 GSC 核中积累,并激活干细胞转录程序。在这里,我们证明 pMad 在 GSC 的核中高度浓缩,而在胞质分裂完成之前,分化的子细胞,即前原细胞(preCB)的核中,pMad 迅速减少。我们表明,一种已知的 Mad 磷酸酶 Dullard(Dd)对于 pMad 的不对称分配是必需的。我们的数学模型再现了 pMad 水平与 Mad 磷酸酶活性的高灵敏度比,并解释了这种不对称性如何在共享细胞质中产生。总之,这些研究揭示了在不对称干细胞分裂过程中打破子细胞对称性的机制。