文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

鉴定和验证缺氧相关基因特征,以预测 I 期肺腺癌患者的临床结局和治疗反应。

Identification and validation of hypoxia-derived gene signatures to predict clinical outcomes and therapeutic responses in stage I lung adenocarcinoma patients.

机构信息

Department of Radiation Oncology, University Hospital, LMU Munich, Munich D-81377, Germany.

Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.

出版信息

Theranostics. 2021 Mar 5;11(10):5061-5076. doi: 10.7150/thno.56202. eCollection 2021.


DOI:10.7150/thno.56202
PMID:33754044
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7978303/
Abstract

The current tumour-node-metastasis (TNM) staging system is insufficient for precise treatment decision-making and accurate survival prediction for patients with stage I lung adenocarcinoma (LUAD). Therefore, more reliable biomarkers are urgently needed to identify the high-risk subset in stage I patients to guide adjuvant therapy. This study retrospectively analysed the transcriptome profiles and clinical parameters of 1,400 stage I LUAD patients from 14 public datasets, including 13 microarray datasets from different platforms and 1 RNA-Seq dataset from The Cancer Genome Atlas (TCGA). A series of bioinformatic and machine learning approaches were combined to establish hypoxia-derived signatures to predict overall survival (OS) and immune checkpoint blockade (ICB) therapy response in stage I patients. In addition, enriched pathways, genomic and copy number alterations were analysed in different risk subgroups and compared to each other. Among various hallmarks of cancer, hypoxia was identified as a dominant risk factor for overall survival in stage I LUAD patients. The hypoxia-related prognostic risk score (HPRS) exhibited more powerful capacity of survival prediction compared to traditional clinicopathological features, and the hypoxia-related immunotherapeutic response score (HIRS) outperformed conventional biomarkers for ICB therapy. An integrated decision tree and nomogram were generated to optimize risk stratification and quantify risk assessment. In summary, the proposed hypoxia-derived signatures are promising biomarkers to predict clinical outcomes and therapeutic responses in stage I LUAD patients.

摘要

目前的肿瘤-淋巴结-转移(TNM)分期系统对于精确的治疗决策和准确的生存预测对于 I 期肺腺癌(LUAD)患者来说是不够的。因此,迫切需要更可靠的生物标志物来识别 I 期患者中的高危亚组,以指导辅助治疗。

本研究回顾性分析了来自 14 个公共数据集的 1400 例 I 期 LUAD 患者的转录组谱和临床参数,包括来自不同平台的 13 个微阵列数据集和来自癌症基因组图谱(TCGA)的 1 个 RNA-Seq 数据集。结合一系列生物信息学和机器学习方法,建立了缺氧衍生的特征,以预测 I 期患者的总生存期(OS)和免疫检查点阻断(ICB)治疗反应。此外,还分析了不同风险亚组中的富集途径、基因组和拷贝数改变,并相互比较。

在各种癌症特征中,缺氧被确定为 I 期 LUAD 患者总体生存的主要危险因素。与传统的临床病理特征相比,缺氧相关的预后风险评分(HPRS)表现出更强的生存预测能力,而缺氧相关的免疫治疗反应评分(HIRS)优于常规的 ICB 治疗生物标志物。生成了一个集成的决策树和列线图,以优化风险分层和量化风险评估。

总之,所提出的缺氧衍生特征是预测 I 期 LUAD 患者临床结局和治疗反应的有前途的生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b14/7978303/c5665bb2f9df/thnov11p5061g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b14/7978303/2261bdf0fc0f/thnov11p5061g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b14/7978303/38019f6a1200/thnov11p5061g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b14/7978303/7c515b5e7be9/thnov11p5061g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b14/7978303/637a9062bc97/thnov11p5061g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b14/7978303/e8a38f9ab881/thnov11p5061g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b14/7978303/80d0b6d7e858/thnov11p5061g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b14/7978303/506cff1fcf5a/thnov11p5061g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b14/7978303/c5665bb2f9df/thnov11p5061g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b14/7978303/2261bdf0fc0f/thnov11p5061g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b14/7978303/38019f6a1200/thnov11p5061g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b14/7978303/7c515b5e7be9/thnov11p5061g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b14/7978303/637a9062bc97/thnov11p5061g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b14/7978303/e8a38f9ab881/thnov11p5061g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b14/7978303/80d0b6d7e858/thnov11p5061g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b14/7978303/506cff1fcf5a/thnov11p5061g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b14/7978303/c5665bb2f9df/thnov11p5061g008.jpg

相似文献

[1]
Identification and validation of hypoxia-derived gene signatures to predict clinical outcomes and therapeutic responses in stage I lung adenocarcinoma patients.

Theranostics. 2021

[2]
Immune landscape and a novel immunotherapy-related gene signature associated with clinical outcome in early-stage lung adenocarcinoma.

J Mol Med (Berl). 2020-6

[3]
Tumor immune profiles noninvasively estimated by FDG PET with deep learning correlate with immunotherapy response in lung adenocarcinoma.

Theranostics. 2020

[4]
A large cohort study identifying a novel prognosis prediction model for lung adenocarcinoma through machine learning strategies.

BMC Cancer. 2019-9-5

[5]
Prognostic model incorporating immune checkpoint genes to predict the immunotherapy efficacy for lung adenocarcinoma: a cohort study integrating machine learning algorithms.

Immunol Res. 2024-8

[6]
Development and validation of a robust immune-related prognostic signature in early-stage lung adenocarcinoma.

J Transl Med. 2020-10-7

[7]
Comprehensive Analysis and Reinforcement Learning of Hypoxic Genes Based on Four Machine Learning Algorithms for Estimating the Immune Landscape, Clinical Outcomes, and Therapeutic Implications in Patients With Lung Adenocarcinoma.

Front Immunol. 2022

[8]
Eight-gene signature predicts recurrence in lung adenocarcinoma.

Cancer Biomark. 2020

[9]
Development and validation of a nomogram with an epigenetic signature for predicting survival in patients with lung adenocarcinoma.

Aging (Albany NY). 2020-11-18

[10]
A Seven-Gene Signature with Close Immune Correlation Was Identified for Survival Prediction of Lung Adenocarcinoma.

Med Sci Monit. 2020-7-2

引用本文的文献

[1]
ADRB2 is regulated by TRIM22 and facilitates lung adenocarcinoma progression via JAK2/STAT3 signaling pathway.

Sci Rep. 2025-7-1

[2]
Prognosis, immunological features and potential mechanisms of HKR1 in prostate cancer via single-cell and bulk RNA-sequencing.

BMC Cancer. 2025-5-1

[3]
Defining hypoxia in cancer: A landmark evaluation of hypoxia gene expression signatures.

Cell Genom. 2025-2-12

[4]
Identification of a metabolic-immune signature associated with prognosis in colon cancer and exploration of potential predictive efficacy of immunotherapy response.

Clin Exp Med. 2025-1-24

[5]
Hypoxia drives the formation of lung micropapillary adenocarcinoma-like structure through hypoxia-inducible factor-1α.

Sci Rep. 2024-12-30

[6]
IKBKE regulates renal cell carcinoma progression and sunitinib resistance through the RRM2-AKT pathway.

Int J Biol Sci. 2024-11-11

[7]
A novel hypoxia- and lactate metabolism-related prognostic signature to characterize the immune landscape and predict immunotherapy response in osteosarcoma.

Front Immunol. 2024

[8]
A hypoxia-derived gene signature to suggest cisplatin-based therapeutic responses in patients with cervical cancer.

Comput Struct Biotechnol J. 2024-6-8

[9]
Modulating cancer mechanopathology to restore vascular function and enhance immunotherapy.

Cell Rep Med. 2024-7-16

[10]
Identification Of Endothelial Cell Immune-related Gene Signature for Lung Adenocarcinoma by Integrated Analysis of Single-cell and Bulk RNA Sequencing Data.

J Cancer. 2024-5-20

本文引用的文献

[1]
Development and validation of a hypoxia-related gene signature to predict overall survival in early-stage lung adenocarcinoma patients.

Ther Adv Med Oncol. 2020-7-2

[2]
Cancer statistics, 2020.

CA Cancer J Clin. 2020-1-8

[3]
Next-generation characterization of the Cancer Cell Line Encyclopedia.

Nature. 2019-5-8

[4]
Cancer stemness, intratumoral heterogeneity, and immune response across cancers.

Proc Natl Acad Sci U S A. 2019-4-17

[5]
Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.

Nat Commun. 2019-4-3

[6]
Rationale for hypoxia assessment and amelioration for precision therapy and immunotherapy studies.

J Clin Invest. 2019-2-1

[7]
p53 mutants cooperate with HIF-1 in transcriptional regulation of extracellular matrix components to promote tumor progression.

Proc Natl Acad Sci U S A. 2018-10-31

[8]
Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response.

Nat Med. 2018-8-20

[9]
Molecular Portrait of Hypoxia in Breast Cancer: A Prognostic Signature and Novel HIF-Regulated Genes.

Mol Cancer Res. 2018-7-23

[10]
Development and Validation of a 28-gene Hypoxia-related Prognostic Signature for Localized Prostate Cancer.

EBioMedicine. 2018-4-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索