Department of Radiation Oncology, University Hospital, LMU Munich, Munich D-81377, Germany.
Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
Theranostics. 2021 Mar 5;11(10):5061-5076. doi: 10.7150/thno.56202. eCollection 2021.
The current tumour-node-metastasis (TNM) staging system is insufficient for precise treatment decision-making and accurate survival prediction for patients with stage I lung adenocarcinoma (LUAD). Therefore, more reliable biomarkers are urgently needed to identify the high-risk subset in stage I patients to guide adjuvant therapy. This study retrospectively analysed the transcriptome profiles and clinical parameters of 1,400 stage I LUAD patients from 14 public datasets, including 13 microarray datasets from different platforms and 1 RNA-Seq dataset from The Cancer Genome Atlas (TCGA). A series of bioinformatic and machine learning approaches were combined to establish hypoxia-derived signatures to predict overall survival (OS) and immune checkpoint blockade (ICB) therapy response in stage I patients. In addition, enriched pathways, genomic and copy number alterations were analysed in different risk subgroups and compared to each other. Among various hallmarks of cancer, hypoxia was identified as a dominant risk factor for overall survival in stage I LUAD patients. The hypoxia-related prognostic risk score (HPRS) exhibited more powerful capacity of survival prediction compared to traditional clinicopathological features, and the hypoxia-related immunotherapeutic response score (HIRS) outperformed conventional biomarkers for ICB therapy. An integrated decision tree and nomogram were generated to optimize risk stratification and quantify risk assessment. In summary, the proposed hypoxia-derived signatures are promising biomarkers to predict clinical outcomes and therapeutic responses in stage I LUAD patients.
目前的肿瘤-淋巴结-转移(TNM)分期系统对于精确的治疗决策和准确的生存预测对于 I 期肺腺癌(LUAD)患者来说是不够的。因此,迫切需要更可靠的生物标志物来识别 I 期患者中的高危亚组,以指导辅助治疗。
本研究回顾性分析了来自 14 个公共数据集的 1400 例 I 期 LUAD 患者的转录组谱和临床参数,包括来自不同平台的 13 个微阵列数据集和来自癌症基因组图谱(TCGA)的 1 个 RNA-Seq 数据集。结合一系列生物信息学和机器学习方法,建立了缺氧衍生的特征,以预测 I 期患者的总生存期(OS)和免疫检查点阻断(ICB)治疗反应。此外,还分析了不同风险亚组中的富集途径、基因组和拷贝数改变,并相互比较。
在各种癌症特征中,缺氧被确定为 I 期 LUAD 患者总体生存的主要危险因素。与传统的临床病理特征相比,缺氧相关的预后风险评分(HPRS)表现出更强的生存预测能力,而缺氧相关的免疫治疗反应评分(HIRS)优于常规的 ICB 治疗生物标志物。生成了一个集成的决策树和列线图,以优化风险分层和量化风险评估。
总之,所提出的缺氧衍生特征是预测 I 期 LUAD 患者临床结局和治疗反应的有前途的生物标志物。
Cancer Biomark. 2020
Int J Biol Sci. 2024-11-11
Comput Struct Biotechnol J. 2024-6-8
Cell Rep Med. 2024-7-16
CA Cancer J Clin. 2020-1-8
Proc Natl Acad Sci U S A. 2019-4-17
Proc Natl Acad Sci U S A. 2018-10-31