文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

羟基酪醇对中风的影响:使用PET-MR成像追踪神经炎症和脑血管参数方面的治疗反应以及功能结局。

Impact of hydroxytyrosol on stroke: tracking therapy response on neuroinflammation and cerebrovascular parameters using PET-MR imaging and on functional outcomes.

作者信息

Barca Cristina, Wiesmann Maximilian, Calahorra Jesús, Wachsmuth Lydia, Döring Christian, Foray Claudia, Heiradi Ali, Hermann Sven, Peinado Maria Ángeles, Siles Eva, Faber Cornelius, Schäfers Michael, Kiliaan Amanda J, Jacobs Andreas H, Zinnhardt Bastian

机构信息

European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.

PET Imaging in Drug Design and Development (PET3D).

出版信息

Theranostics. 2021 Feb 15;11(9):4030-4049. doi: 10.7150/thno.48110. eCollection 2021.


DOI:10.7150/thno.48110
PMID:33754046
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7977466/
Abstract

Immune cells have been implicated in influencing stroke outcomes depending on their temporal dynamics, number, and spatial distribution after ischemia. Depending on their activation status, immune cells can have detrimental and beneficial properties on tissue outcome after stroke, highlighting the need to modulate inflammation towards beneficial and restorative immune responses. Novel dietary therapies may promote modulation of pro- and anti-inflammatory immune cell functions. Among the dietary interventions inspired by the Mediterranean diet, hydroxytyrosol (HT), the main phenolic component of the extra virgin olive oil (EVOO), has been suggested to have antioxidant and anti-inflammatory properties . However, immunomodulatory effects of HT have not yet been studied after stroke. The aim of this project is therefore to monitor the therapeutic effect of a HT-enriched diet in an experimental stroke model using non-invasive multimodal imaging, behavioural phenotyping and cross-correlation with parameters. A total of N = 22 male C57BL/6 mice were fed with either a standard chow (n = 11) or a HT enriched diet (n = 11) for 35 days, following a 30 min transient middle cerebral artery occlusion (tMCAo). T-weighted (lesion) and perfusion (cerebral blood flow)-/diffusion (cellular density)-weighted MR images were acquired at days 1, 3, 7, 14, 21 and 30 post ischemia. [F]DPA-714 (TSPO, neuroinflammation marker) PET-CT scans were acquired at days 7, 14, 21 and 30 post ischemia. Infarct volume (mm), cerebral blood flow (mL/100g/min), apparent diffusion coefficient (10·mm/s) and percentage of injected tracer dose (%ID/mL) were assessed. Behavioural tests (grip test, rotarod, open field, pole test) were performed prior and after ischemia to access therapy effects on sensorimotor functions. analyses (IHC, IF, WB) were performed to quantify TSPO expression, immune cells including microglia/macrophages (Iba-1, F4/80), astrocytes (GFAP) and peripheral markers in serum such as thiobarbituric acid reactive substances (TBARS) and nitric oxide (NO) 35 days post ischemia. Additionally, gene expression of pro- and anti-inflammatory markers were assessed by rt-qPCR, including , , , and . No treatment effect was observed on temporal [F]DPA-714 uptake within the ischemic and contralateral region (two-way RM ANOVA, = 0.71). Quantification of the percentage of TSPO area by immunoreactivity indicated a slight 2-fold increase in TSPO expression within the infarct region in HT-fed mice at day 35 post ischemia ( = 0.011) correlating with a 2-3 fold increase in Iba-1 cell population expressing CD163 as anti-inflammatory marker (R = 0.80). Most of the GFAP cells were TSPO. Only few F4/80 cells were observed at day 35 post ischemia in both groups. No significant treatment effect was observed on global ADC and CBF within the infarct and the contralateral region over time. Behavioural tests indicated improved strength of the forepaws at day 14 post ischemia ( = 0.031). An HT-enriched diet significantly increased the number of Iba-1 microglia/macrophages in the post-ischemic area, inducing higher expression of anti-inflammatory markers while no clear-cut effect was observed. Also, HT did not affect recovery of the cerebrovascular parameters, including ADC and CBF. Altogether, our data indicated that a prolonged dietary intervention with HT, as a single component of the Mediterranean diet, induces molecular changes that may improve stroke outcomes. Therefore, we support the use of the Mediterranean diet as a multicomponent therapy approach after stroke.

摘要

免疫细胞已被证实可根据其在缺血后的时间动态、数量和空间分布来影响中风的预后。根据其激活状态,免疫细胞对中风后的组织预后可能具有有害和有益的特性,这突出了调节炎症以产生有益和恢复性免疫反应的必要性。新型饮食疗法可能有助于调节促炎和抗炎免疫细胞的功能。在地中海饮食启发的饮食干预措施中,羟基酪醇(HT)是特级初榨橄榄油(EVOO)的主要酚类成分,被认为具有抗氧化和抗炎特性。然而,HT对中风后的免疫调节作用尚未得到研究。因此,本项目的目的是使用非侵入性多模态成像、行为表型分析以及与参数的交叉相关性,监测富含HT的饮食在实验性中风模型中的治疗效果。总共N = 22只雄性C57BL/6小鼠在30分钟短暂性大脑中动脉闭塞(tMCAo)后,分别喂食标准饲料(n = 11)或富含HT的饮食(n = 11)35天。在缺血后第1、3、7、14、21和30天获取T加权(病变)和灌注(脑血流量)/扩散(细胞密度)加权的磁共振图像。在缺血后第7、14、21和30天进行[F]DPA - 714(TSPO,神经炎症标志物)PET - CT扫描。评估梗死体积(mm)、脑血流量(mL/100g/min)、表观扩散系数(10·mm/s)和注射示踪剂剂量百分比(%ID/mL)。在缺血前后进行行为测试(握力测试、转棒试验、旷场试验、杆试验)以评估治疗对感觉运动功能的影响。在缺血后35天进行分析(免疫组化、免疫荧光、蛋白质免疫印迹)以量化TSPO表达、免疫细胞,包括小胶质细胞/巨噬细胞(Iba - 1、F4/80)、星形胶质细胞(GFAP)以及血清中的外周标志物,如硫代巴比妥酸反应性物质(TBARS)和一氧化氮(NO)。此外,通过实时定量聚合酶链反应评估促炎和抗炎标志物的基因表达,包括 、 、 、 和 。在缺血和对侧区域内,未观察到对[F]DPA - 714摄取时间的治疗效果(双向重复测量方差分析, = 0.71)。通过免疫反应性对TSPO区域百分比进行定量分析表明,在缺血后35天,喂食HT的小鼠梗死区域内TSPO表达略有2倍增加( = 0.011), 这与表达CD163作为抗炎标志物的Iba - 1细胞群体增加2 - 3倍相关(R = 0.80)。大多数GFAP细胞为TSPO阳性。在缺血后35天,两组中仅观察到少数F4/80细胞。随着时间推移,在梗死和对侧区域内,未观察到对整体表观扩散系数和脑血流量的显著治疗效果。行为测试表明,在缺血后第14天前爪力量有所改善( = 0.031)。富含HT的饮食显著增加了缺血后区域Iba - 1小胶质细胞/巨噬细胞的数量,诱导了抗炎标志物的更高表达,而未观察到明确的效果。此外,HT并未影响脑血管参数(包括表观扩散系数和脑血流量)的恢复。总之,我们的数据表明,作为地中海饮食的单一成分,长期使用HT进行饮食干预可诱导分子变化,可能改善中风预后。因此,我们支持将地中海饮食作为中风后的多成分治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6085/7977466/25e5097d9bcf/thnov11p4030g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6085/7977466/820d2963ad3d/thnov11p4030g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6085/7977466/a17be26a0cc6/thnov11p4030g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6085/7977466/91e088f4669c/thnov11p4030g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6085/7977466/68720e5779c2/thnov11p4030g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6085/7977466/9dc6d8b4c189/thnov11p4030g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6085/7977466/e5d6a8f6d7e5/thnov11p4030g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6085/7977466/afd8d3e713c1/thnov11p4030g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6085/7977466/c4a530c79e1b/thnov11p4030g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6085/7977466/8fe901e1f78a/thnov11p4030g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6085/7977466/25e5097d9bcf/thnov11p4030g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6085/7977466/820d2963ad3d/thnov11p4030g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6085/7977466/a17be26a0cc6/thnov11p4030g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6085/7977466/91e088f4669c/thnov11p4030g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6085/7977466/68720e5779c2/thnov11p4030g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6085/7977466/9dc6d8b4c189/thnov11p4030g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6085/7977466/e5d6a8f6d7e5/thnov11p4030g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6085/7977466/afd8d3e713c1/thnov11p4030g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6085/7977466/c4a530c79e1b/thnov11p4030g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6085/7977466/8fe901e1f78a/thnov11p4030g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6085/7977466/25e5097d9bcf/thnov11p4030g010.jpg

相似文献

[1]
Impact of hydroxytyrosol on stroke: tracking therapy response on neuroinflammation and cerebrovascular parameters using PET-MR imaging and on functional outcomes.

Theranostics. 2021-2-15

[2]
Characterization of the inflammatory post-ischemic tissue by full volumetric analysis of a multimodal imaging dataset.

Neuroimage. 2020-11-15

[3]
Short-Term Colony-Stimulating Factor 1 Receptor Inhibition-Induced Repopulation After Stroke Assessed by Longitudinal F-DPA-714 PET Imaging.

J Nucl Med. 2022-9

[4]
C-DPA-713 Versus F-GE-180: A Preclinical Comparison of Translocator Protein 18 kDa PET Tracers to Visualize Acute and Chronic Neuroinflammation in a Mouse Model of Ischemic Stroke.

J Nucl Med. 2018-7-5

[5]
A Longitudinal PET/MRI Study of Colony-Stimulating Factor 1 Receptor-Mediated Microglia Depletion in Experimental Stroke.

J Nucl Med. 2022-3

[6]
Hydroxytyrosol, the Major Phenolic Compound of Olive Oil, as an Acute Therapeutic Strategy after Ischemic Stroke.

Nutrients. 2019-10-11

[7]
PET Imaging of Neuroinflammation Using [11C]DPA-713 in a Mouse Model of Ischemic Stroke.

J Vis Exp. 2018-6-14

[8]
Imaging of translocator protein upregulation is selective for pro-inflammatory polarized astrocytes and microglia.

Glia. 2019-9-3

[9]
[F]CB251 PET/MR imaging probe targeting translocator protein (TSPO) independent of its Polymorphism in a Neuroinflammation Model.

Theranostics. 2020

[10]
Molecular Imaging of Immune Cell Dynamics During De- and Remyelination in the Cuprizone Model of Multiple Sclerosis by [F]DPA-714 PET and MRI.

Theranostics. 2019-2-20

引用本文的文献

[1]
Hydroxytyrosol and Brain Tumors: Mechanisms of Action and Therapeutic Potential.

Curr Issues Mol Biol. 2025-8-18

[2]
Extra Virgin Olive Oil (EVOO) Components: Interaction with Pro-Inflammatory Cytokines Focusing on Cancer and Skeletal Muscle Biology.

Nutrients. 2025-7-16

[3]
NO-releasing double-crosslinked responsive hydrogels accelerate the treatment and repair of ischemic stroke.

Acta Pharm Sin B. 2025-2

[4]
Hydroxytyrosol, a Promising Supplement in the Management of Human Stroke: An Exploratory Study.

Int J Mol Sci. 2024-4-27

[5]
From the gut to the brain: the long journey of phenolic compounds with neurocognitive effects.

Nutr Rev. 2025-2-1

[6]
The novel imaging methods in diagnosis and assessment of cerebrovascular diseases: an overview.

Front Med (Lausanne). 2024-4-10

[7]
Brain-Heart Axis and the Inflammatory Response: Connecting Stroke and Cardiac Dysfunction.

Cardiology. 2024

[8]
Single-cell RNA sequencing analysis of the retina under acute high intraocular pressure.

Neural Regen Res. 2024-11-1

[9]
Neuroprotection Afforded by an Enriched Mediterranean-like Diet Is Modified by Exercise in a Rat Male Model of Cerebral Ischemia.

Antioxidants (Basel). 2024-1-23

[10]
Stroke Related Brain-Heart Crosstalk: Pathophysiology, Clinical Implications, and Underlying Mechanisms.

Adv Sci (Weinh). 2024-4

本文引用的文献

[1]
Characterization of the inflammatory post-ischemic tissue by full volumetric analysis of a multimodal imaging dataset.

Neuroimage. 2020-11-15

[2]
Modulators of microglia activation and polarization in ischemic stroke (Review).

Mol Med Rep. 2020-5

[3]
Hydroxytyrosol, the Major Phenolic Compound of Olive Oil, as an Acute Therapeutic Strategy after Ischemic Stroke.

Nutrients. 2019-10-11

[4]
Immunomodulatory Therapeutic Strategies in Stroke.

Front Pharmacol. 2019-6-20

[5]
Microglial proliferation and monocyte infiltration contribute to microgliosis following status epilepticus.

Glia. 2019-4-5

[6]
Hydroxytyrosol, Tyrosol and Derivatives and Their Potential Effects on Human Health.

Molecules. 2019-5-24

[7]
Dual Functions of Microglia in Ischemic Stroke.

Neurosci Bull. 2019-5-6

[8]
Functional Dynamics of Neutrophils After Ischemic Stroke.

Transl Stroke Res. 2020-2

[9]
Greater infarct growth limiting effect of mechanical thrombectomy in stroke patients with poor collaterals.

J Neurointerv Surg. 2019-2-27

[10]
Hydroxytyrosol Exerts Anti-Inflammatory and Anti-Oxidant Activities in a Mouse Model of Systemic Inflammation.

Molecules. 2018-12-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索