Semmelweis University, Department of Bioinformatics and 2nd Department of Pediatrics, Budapest, Hungary.
Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok körútja, Budapest, Hungary.
Carcinogenesis. 2021 Jun 21;42(6):804-813. doi: 10.1093/carcin/bgab024.
Despite advances in molecular characterization of glioblastoma multiforme (GBM), only a handful of predictive biomarkers exist with limited clinical relevance. We aimed to identify differentially expressed genes in tumor samples collected at surgery associated with response to subsequent treatment, including temozolomide (TMZ) and nitrosoureas. Gene expression was collected from multiple independent datasets. Patients were categorized as responders/nonresponders based on their survival status at 16 months postsurgery. For each gene, the expression was compared between responders and nonresponders with a Mann-Whitney U-test and receiver operating characteristic. The package 'roc' was used to calculate the area under the curve (AUC). The integrated database comprises 454 GBM patients from 3 independent datasets and 10 103 genes. The highest proportion of responders (68%) were among patients treated with TMZ combined with nitrosoureas, where FCGR2B upregulation provided the strongest predictive value (AUC = 0.72, P < 0.001). Elevated expression of CSTA and MRPS17 was associated with a lack of response to multiple treatment strategies. DLL3 upregulation was present in subsequent responders to any treatment combination containing TMZ. Three genes (PLSCR1, MX1 and MDM2) upregulated both in the younger cohort and in patients expressing low MGMT delineate a subset of patients with worse prognosis within a population generally associated with a favorable outcome. The identified transcriptomic changes provide biomarkers of responsiveness, offer avenues for preclinical studies and may enhance future GBM patient stratifications. The described methodology provides a reliable pipeline for the initial testing of potential biomarker candidates for future validation studies.
尽管胶质母细胞瘤(GBM)的分子特征取得了进展,但只有少数具有有限临床相关性的预测性生物标志物存在。我们旨在鉴定与对随后的治疗(包括替莫唑胺(TMZ)和亚硝脲)反应相关的手术采集的肿瘤样本中的差异表达基因。从多个独立数据集收集基因表达。根据术后 16 个月的生存状况,将患者分为 responders/nonresponders。对于每个基因,通过 Mann-Whitney U 检验和接收者操作特征比较 responders 和 nonresponders 之间的表达。使用 'roc' 包计算曲线下面积(AUC)。集成数据库包括来自 3 个独立数据集的 454 名 GBM 患者和 10103 个基因。在接受 TMZ 联合亚硝脲治疗的患者中, responders 的比例最高(68%),其中 FCGR2B 的上调提供了最强的预测价值(AUC = 0.72,P < 0.001)。CSTA 和 MRPS17 的表达升高与对多种治疗策略无反应有关。DLL3 的上调存在于任何包含 TMZ 的治疗组合的后续 responders 中。三个基因(PLSCR1、MX1 和 MDM2)在年轻队列和表达低 MGMT 的患者中均上调,这表明在一般预后良好的人群中存在预后较差的患者亚群。鉴定的转录组变化提供了反应性的生物标志物,为临床前研究提供了途径,并可能增强未来 GBM 患者的分层。所描述的方法学为未来验证研究提供了一种可靠的初始测试潜在生物标志物候选物的方法。