Suppr超能文献

从卷积神经网络到更高层次认知模型(再回来)。

From convolutional neural networks to models of higher-level cognition (and back again).

机构信息

Department of Computer Science, Princeton University, Princeton, New Jersey.

Department of Psychology, Princeton University, Princeton, New Jersey.

出版信息

Ann N Y Acad Sci. 2021 Dec;1505(1):55-78. doi: 10.1111/nyas.14593. Epub 2021 Mar 22.

Abstract

The remarkable successes of convolutional neural networks (CNNs) in modern computer vision are by now well known, and they are increasingly being explored as computational models of the human visual system. In this paper, we ask whether CNNs might also provide a basis for modeling higher-level cognition, focusing on the core phenomena of similarity and categorization. The most important advance comes from the ability of CNNs to learn high-dimensional representations of complex naturalistic images, substantially extending the scope of traditional cognitive models that were previously only evaluated with simple artificial stimuli. In all cases, the most successful combinations arise when CNN representations are used with cognitive models that have the capacity to transform them to better fit human behavior. One consequence of these insights is a toolkit for the integration of cognitively motivated constraints back into CNN training paradigms in computer vision and machine learning, and we review cases where this leads to improved performance. A second consequence is a roadmap for how CNNs and cognitive models can be more fully integrated in the future, allowing for flexible end-to-end algorithms that can learn representations from data while still retaining the structured behavior characteristic of human cognition.

摘要

卷积神经网络 (CNN) 在现代计算机视觉中的显著成功现在已经广为人知,并且它们越来越多地被探索作为人类视觉系统的计算模型。在本文中,我们探讨了 CNN 是否也可以为模拟更高层次的认知提供基础,重点关注相似性和分类这两个核心现象。最重要的进展来自 CNN 学习复杂自然图像的高维表示的能力,这大大扩展了以前仅使用简单人工刺激进行评估的传统认知模型的范围。在所有情况下,当将 CNN 表示与具有将其转换为更好地适应人类行为的能力的认知模型结合使用时,最成功的组合才会出现。这些见解的一个结果是,为计算机视觉和机器学习中的认知驱动约束重新集成到 CNN 训练范例中提供了一个工具包,我们回顾了这些情况如何导致性能提高。另一个结果是 CNN 和认知模型如何在未来更充分地集成的路线图,允许使用灵活的端到端算法从数据中学习表示,同时仍然保留人类认知的结构化行为特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e8c/9292363/788462e79784/NYAS-1505-55-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验