Sebastiani Federica, Yanez Arteta Marianna, Lerche Michael, Porcar Lionel, Lang Christian, Bragg Ryan A, Elmore Charles S, Krishnamurthy Venkata R, Russell Robert A, Darwish Tamim, Pichler Harald, Waldie Sarah, Moulin Martine, Haertlein Michael, Forsyth V Trevor, Lindfors Lennart, Cárdenas Marité
Biofilms - Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden.
Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, 431 83 Gothenburg Sweden.
ACS Nano. 2021 Apr 27;15(4):6709-6722. doi: 10.1021/acsnano.0c10064. Epub 2021 Mar 23.
Emerging therapeutic treatments based on the production of proteins by delivering mRNA have become increasingly important in recent times. While lipid nanoparticles (LNPs) are approved vehicles for small interfering RNA delivery, there are still challenges to use this formulation for mRNA delivery. LNPs are typically a mixture of a cationic lipid, distearoylphosphatidylcholine (DSPC), cholesterol, and a PEG-lipid. The structural characterization of mRNA-containing LNPs (mRNA-LNPs) is crucial for a full understanding of the way in which they function, but this information alone is not enough to predict their fate upon entering the bloodstream. The biodistribution and cellular uptake of LNPs are affected by their surface composition as well as by the extracellular proteins present at the site of LNP administration, ., apolipoproteinE (ApoE). ApoE, being responsible for fat transport in the body, plays a key role in the LNP's plasma circulation time. In this work, we use small-angle neutron scattering, together with selective lipid, cholesterol, and solvent deuteration, to elucidate the structure of the LNP and the distribution of the lipid components in the absence and the presence of ApoE. While DSPC and cholesterol are found to be enriched at the surface of the LNPs in buffer, binding of ApoE induces a redistribution of the lipids at the shell and the core, which also impacts the LNP internal structure, causing release of mRNA. The rearrangement of LNP components upon ApoE incubation is discussed in terms of potential relevance to LNP endosomal escape.
近年来,基于通过递送信使核糖核酸(mRNA)来生产蛋白质的新兴治疗方法变得越来越重要。虽然脂质纳米颗粒(LNPs)是用于递送小干扰RNA的已获批准的载体,但使用这种制剂进行mRNA递送仍然存在挑战。LNPs通常是阳离子脂质、二硬脂酰磷脂酰胆碱(DSPC)、胆固醇和聚乙二醇脂质的混合物。含mRNA的LNPs(mRNA-LNPs)的结构表征对于全面了解其功能方式至关重要,但仅这些信息不足以预测它们进入血液后的命运。LNPs的生物分布和细胞摄取受其表面组成以及LNP给药部位存在的细胞外蛋白质(即载脂蛋白E(ApoE))的影响。ApoE负责体内脂肪运输,在LNP的血浆循环时间中起关键作用。在这项工作中,我们使用小角中子散射以及选择性脂质、胆固醇和溶剂氘化来阐明在不存在和存在ApoE的情况下LNP的结构以及脂质成分的分布。虽然在缓冲液中发现DSPC和胆固醇在LNPs表面富集,但ApoE的结合会诱导壳层和核心处脂质的重新分布,这也会影响LNP的内部结构,导致mRNA释放。根据与LNP内体逃逸的潜在相关性讨论了ApoE孵育后LNP成分的重排。
Proc Natl Acad Sci U S A. 2018-3-27
Acc Chem Res. 2022-1-4
Eur J Pharm Sci. 2022-9-1
Methods Mol Biol. 2025
Pharmaceutics. 2025-7-12
Proc Natl Acad Sci U S A. 2025-7-22
Mol Ther Methods Clin Dev. 2025-6-9
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2025
Proc Natl Acad Sci U S A. 2025-5-27
Bioconjug Chem. 2020-9-16
Adv Drug Deliv Rev. 2020
BioDrugs. 2020-6
Pharmaceutics. 2020-1-28
Nanoscale. 2019-11-21