Sjöberg Mattias, Olsén Erik, Mapar Mokhtar, Parkkila Petteri, Niederkofler Simon, Mohammadi Sara, Jing Yujia, Emilsson Gustav, Lindfors Lennart, Agnarsson Björn, Höök Fredrik
Division of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg 412 96, Sweden.
Nanolyze, Gothenburg 431 83, Sweden.
Proc Natl Acad Sci U S A. 2025 May 27;122(21):e2426601122. doi: 10.1073/pnas.2426601122. Epub 2025 May 22.
The most efficient lipid nanoparticles (LNPs) for gene therapeutics rely on specific lipids that protect the oligonucleotide cargo and aid cellular uptake and subsequent endosomal escape. Yet, the efficacy of current state-of-the-art LNP formulations remains low, a few percent at best. A deeper understanding of how LNP cargo, lipid composition, stoichiometry, size, structure, and pH-induced conformational changes influence their efficiency is therefore necessary for improved design. Given the variability of these properties, preferred screening methods should offer single-particle-resolved multiparametric characterization. In this work, we employ combined surface-sensitive fluorescence and label-free scattering microscopy with single LNP resolution, which when integrated with microfluidics for liquid exchange between media of varying refractive index, enables quantification of LNP size, refractive index, and cargo content. We investigate two LNP formulations that, while similar in size and mRNA content, exhibit differences in functional mRNA delivery. Correlating size with the content of Cy5-labeled mRNA revealed that the cargo scaled with LNP volume for both types of LNPs, while the refractive index varied marginally across LNP size. While this multiparametric fingerprinting alone could not distinguish the two LNP formulations, we use the same experimental platform to show that their difference in fusogenicity to a supporting lipid bilayer under early endosomal conditions (drop in pH from 7.4 to 6.0) correlates with observed differences in in vitro cellular data. This highlights a limitation of the current state-of-the-art toolbox for in situ LNP characterization, which generally focuses on structural properties of suspended LNPs, which may not adequately capture functional performance.
用于基因治疗的最有效的脂质纳米颗粒(LNP)依赖于特定的脂质,这些脂质可保护寡核苷酸货物,并有助于细胞摄取及随后的内体逃逸。然而,当前最先进的LNP制剂的疗效仍然很低,充其量只有百分之几。因此,深入了解LNP货物、脂质组成、化学计量、大小、结构以及pH诱导的构象变化如何影响其效率,对于改进设计是必要的。鉴于这些性质的变异性,首选的筛选方法应提供单颗粒分辨的多参数表征。在这项工作中,我们采用了具有单LNP分辨率的表面敏感荧光和无标记散射显微镜相结合的方法,当与微流控技术集成以实现不同折射率介质之间的液体交换时,能够对LNP的大小、折射率和货物含量进行定量。我们研究了两种LNP制剂,它们在大小和mRNA含量上相似,但在功能性mRNA递送方面存在差异。将大小与Cy5标记的mRNA含量相关联后发现,两种类型的LNP中货物都与LNP体积成比例,而折射率在LNP大小范围内变化很小。虽然仅这种多参数指纹识别无法区分这两种LNP制剂,但我们使用相同的实验平台表明,它们在早期内体条件下(pH从7.4降至6.0)对支持脂质双层的融合性差异与体外细胞数据中观察到的差异相关。这突出了当前用于原位LNP表征的最先进工具箱的一个局限性,该工具箱通常侧重于悬浮LNP的结构性质,可能无法充分捕捉功能性能。