Manrique Pedro D, Gnanakaran S
Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.
J Phys Chem B. 2021 Apr 1;125(12):3114-3118. doi: 10.1021/acs.jpcb.1c00607. Epub 2021 Mar 23.
The emergence of multidrug resistance in Gram-negative pathogens is critically determined by the interplay between efflux pumps activity and low permeation outer membrane. Although phenotypic heterogeneity in isogenic cells is recognized as a key factor of treatment failure, a mathematical framework able to integrate growth dynamics and single-cell heterogeneity in antimicrobial resistance, remains absent. Here we provide such framework that bridges single-cell and colony scales in the context of bacterial survival and efficacy against drugs. Using experimental inputs, our approach produces testable outputs and reveals nontrivial collective effects with key implications for fitness and survival of the colony. This framework provides a mathematical tool to test stress response strategies in organisms that can potentially guide experiments in natural and synthetic cellular systems.
革兰氏阴性病原体中多药耐药性的出现,关键取决于外排泵活性与低渗透性外膜之间的相互作用。尽管同基因细胞中的表型异质性被认为是治疗失败的关键因素,但目前仍缺乏一个能够整合抗菌耐药性中生长动力学和单细胞异质性的数学框架。在此,我们提供了这样一个框架,它在细菌存活和药物疗效的背景下,架起了单细胞和菌落尺度之间的桥梁。利用实验输入,我们的方法产生了可测试的输出,并揭示了具有重要意义的非平凡集体效应,这些效应关乎菌落的适应性和生存。该框架提供了一种数学工具,用于测试生物体中的应激反应策略,这有可能指导天然和合成细胞系统中的实验。