Suppr超能文献

由于动态相互作用,耦合非线性振荡器中的突发节律。

Emergent rhythms in coupled nonlinear oscillators due to dynamic interactions.

机构信息

Department of Physics, Central University of Rajasthan, NH-8,Bandar Sindri, Ajmer 305 817, India.

Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India.

出版信息

Chaos. 2021 Jan;31(1):011105. doi: 10.1063/5.0039879.

Abstract

The role of a new form of dynamic interaction is explored in a network of generic identical oscillators. The proposed design of dynamic coupling facilitates the onset of a plethora of asymptotic states including synchronous states, amplitude death states, oscillation death states, a mixed state (complete synchronized cluster and small amplitude desynchronized domain), and bistable states (coexistence of two attractors). The dynamical transitions from the oscillatory to the death state are characterized using an average temporal interaction approximation, which agrees with the numerical results in temporal interaction. A first-order phase transition behavior may change into a second-order transition in spatial dynamic interaction solely depending on the choice of initial conditions in the bistable regime. However, this possible abrupt first-order like transition is completely non-existent in the case of temporal dynamic interaction. Besides the study on periodic Stuart-Landau systems, we present results for the paradigmatic chaotic model of Rössler oscillators and the MacArthur ecological model.

摘要

探讨了一种新型动态相互作用形式在通用相同振荡器网络中的作用。所提出的动态耦合设计有利于多种渐近状态的出现,包括同步状态、振幅死亡状态、振荡死亡状态、混合状态(完全同步簇和小振幅去同步域)和双稳态状态(两个吸引子共存)。使用平均时间相互作用近似值来描述从振荡状态到死亡状态的动力学转变,该近似值与时间相互作用中的数值结果一致。在双稳区中,仅取决于初始条件的选择,一阶相变行为可能转变为二阶相变。然而,在时间动态相互作用的情况下,这种可能的突然的一阶类似转变是完全不存在的。除了对周期性 Stuart-Landau 系统的研究之外,我们还给出了 Rossler 振荡器和 MacArthur 生态模型的典范混沌模型的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验