Suppr超能文献

用于预测急性心肺症状患者到急诊科就诊时主要不良事件的胸部X光片人工智能分析

Artificial Intelligence Analysis of Chest Radiographs for Predicting Major Adverse Events in Patients Visiting the Emergency Department With Acute Cardiopulmonary Symptoms.

作者信息

Rhee Chanyoung, Hong Ki Jeong, Kim Ki Hong, Goo Jin Mo, Hwang Eui Jin

机构信息

Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.

Department of Emergency Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.

出版信息

Korean J Radiol. 2025 Sep;26(9):877-887. doi: 10.3348/kjr.2025.0237.

Abstract

OBJECTIVE

In this study, we investigated whether artificial intelligence (AI) analysis of chest radiographs (CXRs) can predict major adverse clinical events in patients visiting the emergency department (ED) with acute cardiopulmonary symptoms.

MATERIALS AND METHODS

This secondary analysis of a previous clinical trial included patients who visited the ED with symptoms suggestive of acute cardiopulmonary disease and underwent chest radiography between June 2020 and December 2021. All patients underwent triage upon arrival at ED according to the Korean Triage and Acuity Scale (KTAS). The CXRs were retrospectively analyzed using a commercial AI (Lunit INSIGHT CXR, version 3.1.4.1) capable of detecting seven abnormalities on a single frontal CXR. The predictive performance of the AI analysis for major adverse cardiopulmonary events (any among hospitalization, ED revisits, and death in the ED due to acute cardiopulmonary disease) was compared with that of the KTAS using the area under the receiver operating characteristic curve (AUC). Multivariable (the AI analysis result and KTAS level) logistic regression analysis was conducted to investigate whether the AI analysis result was an independent predictor of the events and whether the combination of the AI analysis and KTAS has additional merit.

RESULTS

Among 3576 patients (1966 males; mean age, 64 years), 1148 (32.1%) experienced major adverse cardiopulmonary events. AI analysis of CXRs outperformed the KTAS in predicting these events (AUC, 0.795 vs. 0.610; < 0.001). The AI analysis result was an independent predictor of these events after adjusting for the KTAS level (adjusted odd ratios of 1.032 and 6.913 for every 1% increase and ≥15%, respectively, in the AI probability score; < 0.001). The combination of the AI analysis and KTAS showed an AUC that was higher than that of the KTAS alone (0.799; < 0.001) and in-par with that of the AI analysis only ( = 0.187).

CONCLUSION

AI analysis of CXRs showed greater accuracy than the KTAS did in predicting major adverse cardiopulmonary events in patients visiting the ED with acute cardiopulmonary symptoms. AI analysis may enhance the efficacy of patient triage in the ED.

摘要

目的

在本研究中,我们调查了胸部X光片(CXR)的人工智能(AI)分析能否预测因急性心肺症状前往急诊科(ED)就诊的患者的主要不良临床事件。

材料与方法

这项对先前一项临床试验的二次分析纳入了在2020年6月至2021年12月期间因提示急性心肺疾病的症状前往ED就诊并接受胸部X光检查的患者。所有患者到达ED时均根据韩国分诊及 acuity 量表(KTAS)进行分诊。使用能够在单张正位CXR上检测七种异常的商用AI(Lunit INSIGHT CXR,版本3.1.4.1)对CXR进行回顾性分析。使用受试者操作特征曲线下面积(AUC)将AI分析对主要不良心肺事件(因急性心肺疾病导致的住院、ED复诊和ED死亡中的任何一种)的预测性能与KTAS的预测性能进行比较。进行多变量(AI分析结果和KTAS级别)逻辑回归分析,以调查AI分析结果是否为这些事件的独立预测因素,以及AI分析和KTAS的组合是否具有额外的优势。

结果

在3576例患者(1966例男性;平均年龄64岁)中,1148例(32.1%)发生了主要不良心肺事件。CXR的AI分析在预测这些事件方面优于KTAS(AUC,0.795对0.610;<0.001)。在调整KTAS级别后,AI分析结果是这些事件的独立预测因素(AI概率评分每增加1%和≥15%时,调整后的比值比分别为1.032和6.913;<0.001)。AI分析和KTAS的组合显示的AUC高于单独的KTAS(0.799;<0.001),且与仅AI分析的AUC相当(=0.187)。

结论

CXR的AI分析在预测因急性心肺症状前往ED就诊的患者的主要不良心肺事件方面比KTAS具有更高的准确性。AI分析可能会提高ED中患者分诊的效率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验